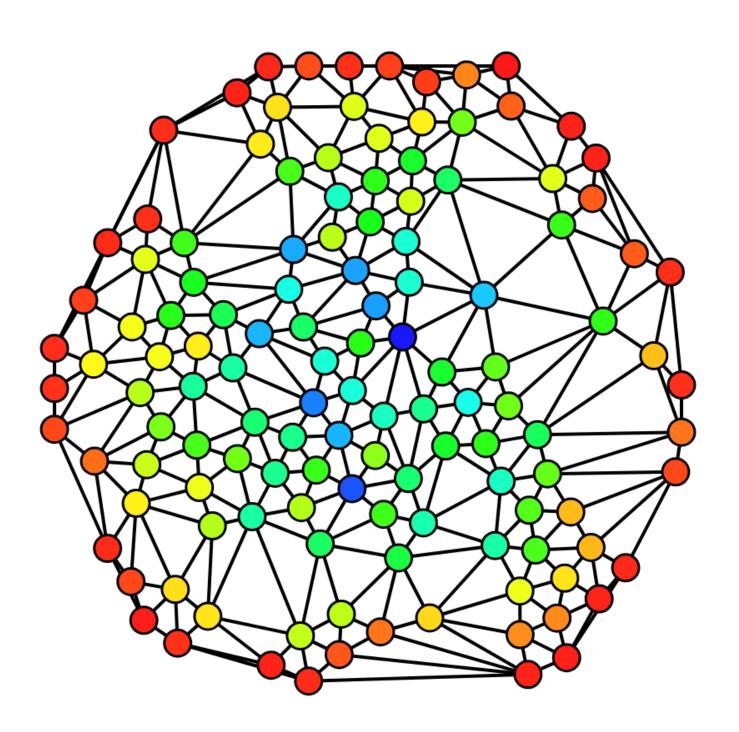
Simple Length-Constrained Minimum Spanning Trees

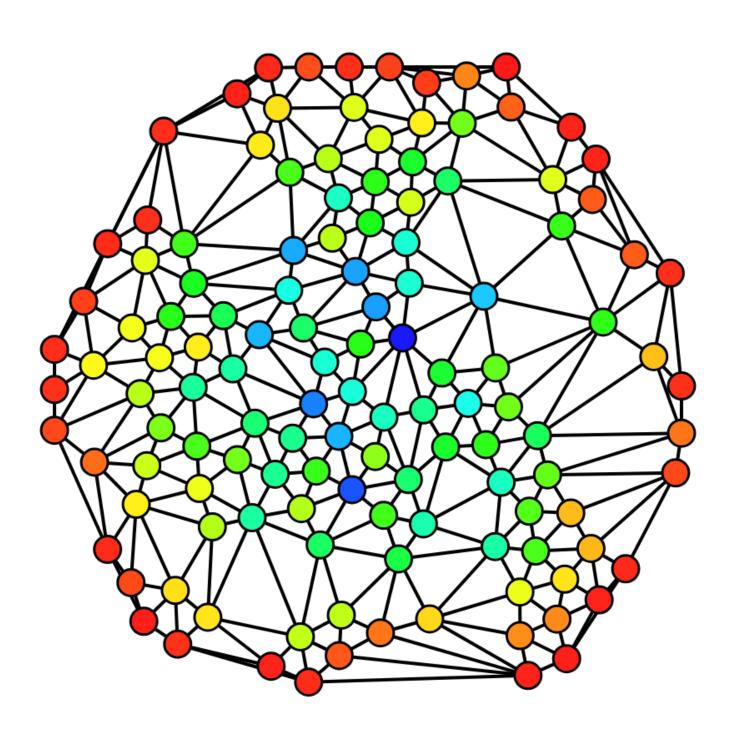
Ellis Hershkowitz & Richard Huang **Brown University**

• Given a (connected) edge-weighted graph, find a spanning tree that minimizes the sum of edge weights

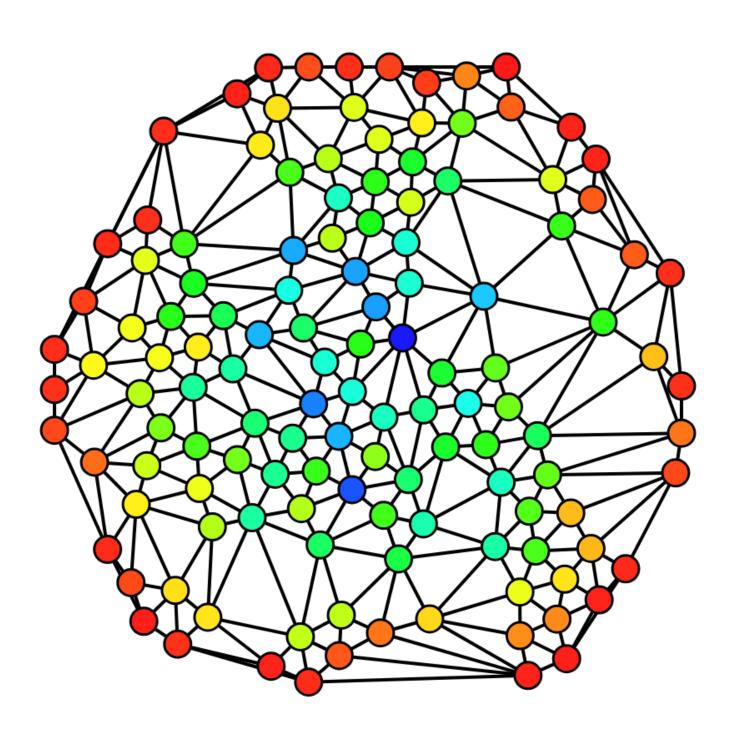
 Given a (connected) edge-weighted graph, find a spanning tree that minimizes the sum of edge weights

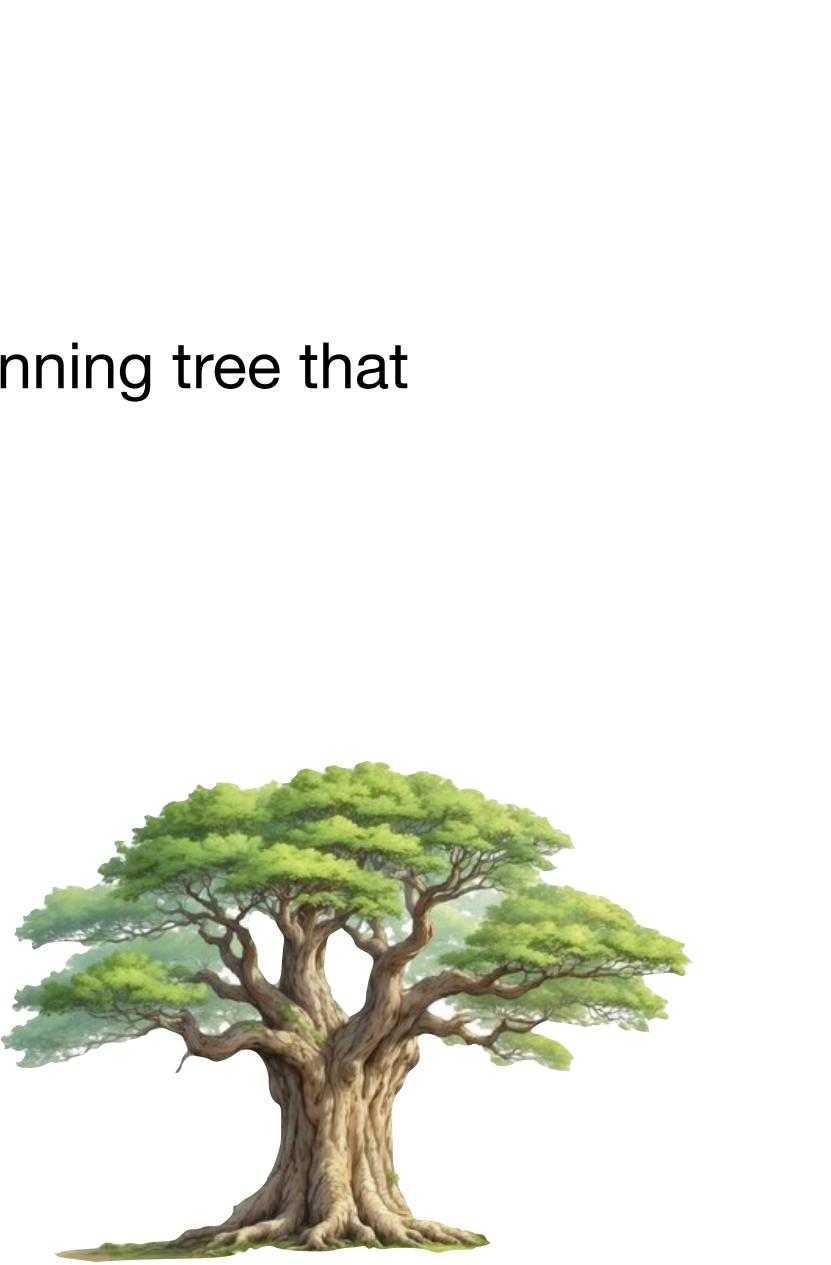


• Given a (connected) edge-weighted graph, find a spanning tree that minimizes the sum of edge weights



 Given a (connected) edge-weighted graph, find a spanning tree that minimizes the sum of edge weights





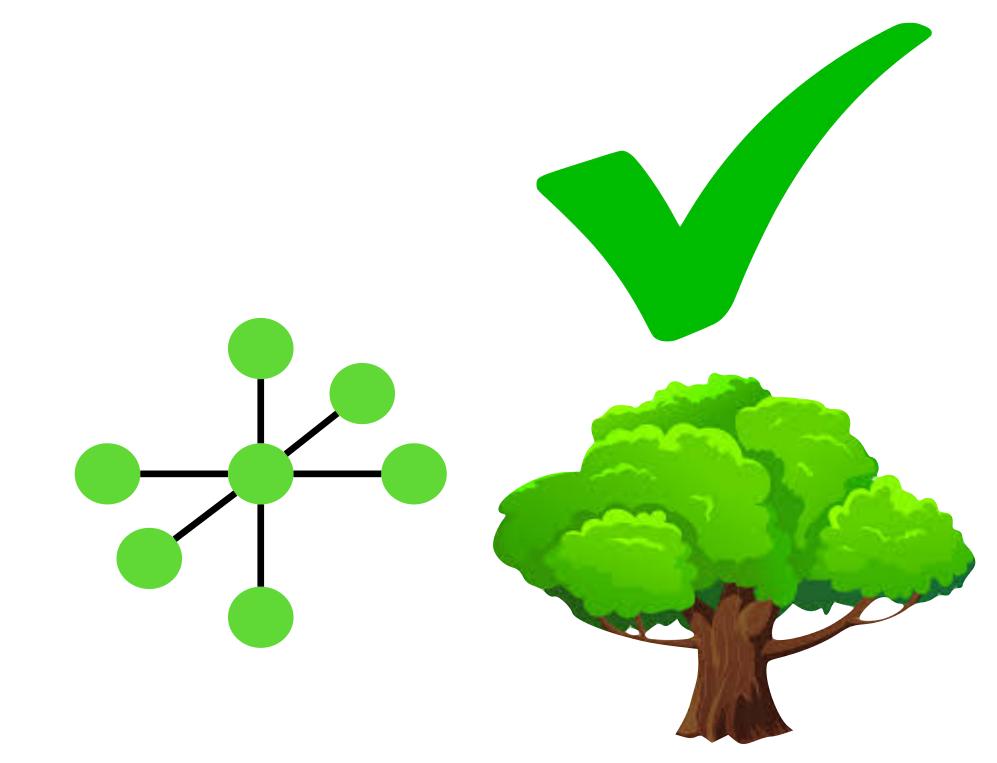
Introduce an edge-length function and a length (diameter) constraint •

- Introduce an edge-length function and a length (diameter) constraint
- Given another input L > 0 find a spanning tree with diameter at most L that minimizes the sum of edge weights

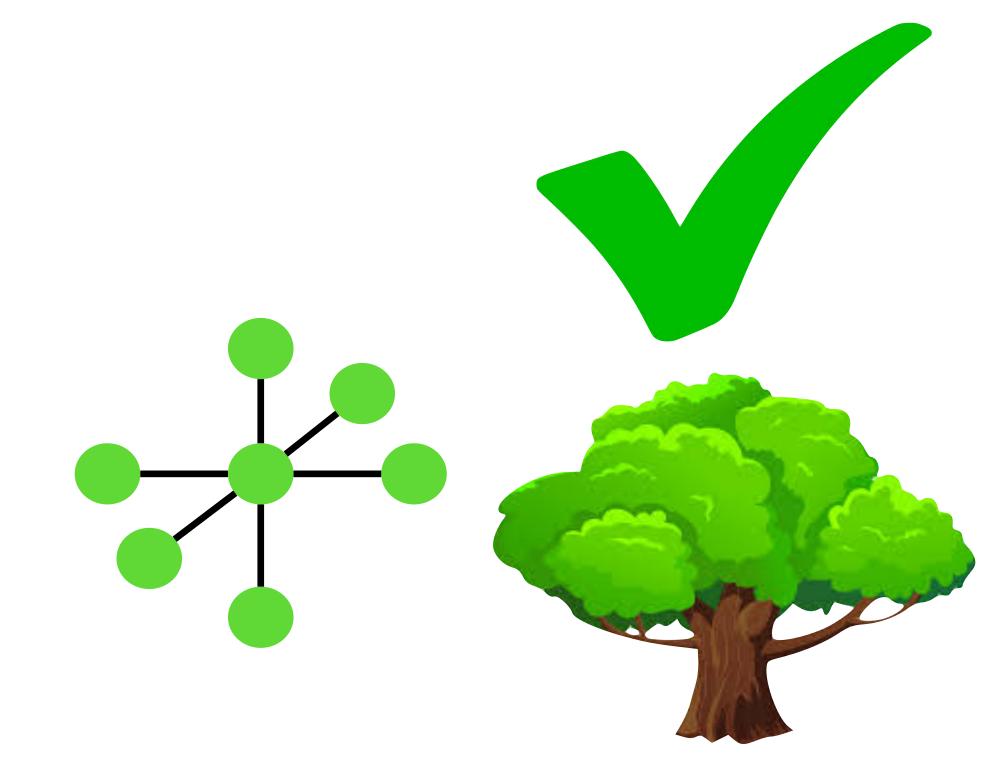
- Introduce an edge-length function and a length (diameter) constraint
- Given another input L > 0 find a spanning tree with diameter at most L that minimizes the sum of edge weights

- Introduce an edge-length function and a length (diameter) constraint
- Given another input L > 0 find a spanning tree with diameter at most L that minimizes the sum of edge weights

- Introduce an edge-length function and a length (diameter) constraint
- Given another input L > 0 find a spanning tree with diameter at most L that minimizes the sum of edge weights



- Introduce an edge-length function and a length (diameter) constraint
- Given another input L > 0 find a spanning tree with diameter at most L that minimizes the sum of edge weights



• NP-hard; there mainly exist **bicriteria** approximation algorithms

- NP-hard; there mainly exist bicriteria approximation algorithms
 - Let OPT_L be the weight of a min-weight spanning tree with diameter L

- NP-hard; there mainly exist **bicriteria** approximation algorithms
 - Let OPT_L be the weight of a min-weight spanning tree with diameter L
 - Need to approximate L and OPT_L

There is a (simple) algorithm that given any $\epsilon \geq 1/\text{poly}(n)$,

There is a (simple) algorithm that given any $\epsilon \geq 1/\text{poly}(n)$, outputs a spanning tree with

- There is a (simple) algorithm that given any $\epsilon \geq 1/\text{poly}(n)$, outputs a spanning tree with
 - length: $O(1/\epsilon) \cdot L$

- There is a (simple) algorithm that given any $\epsilon \geq 1/\text{poly}(n)$,
- outputs a spanning tree with
 - length: $O(1/\epsilon) \cdot L$
 - weight: $O(n^{\epsilon}/\epsilon) \cdot OPT_L$

- There is a (simple) algorithm that given any $\epsilon \geq 1/\text{poly}(n)$, outputs a spanning tree with
 - - length: $O(1/\epsilon) \cdot L$
 - weight: $O(n^{\epsilon}/\epsilon) \cdot OPT_L$
 - (with high probability)

ϵ	Length	Weight

ϵ	Length	Weight
1/log <i>n</i>	$O(\log n)$	$O(\log n)$

ϵ	Length	Weight
1/log <i>n</i>	$O(\log n)$	$O(\log n)$
1/ <i>C</i>	<i>O</i> (1)	$O(n^{1/c})$

ϵ	Length	Weight
1/log <i>n</i>	$O(\log n)$	<i>O</i> (log <i>n</i>)
1/ <i>c</i>	<i>O</i> (1)	$O(n^{1/c})$
$\log \log n / \log n$	$o(\log n)$	poly(log n)

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

If you want to preserve L exactly,

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

If you want to preserve L exactly,

then you must pay an $\Omega(\log n)$ weight approximation.

Weight	Length	Comments	Citation

Weight	Length	Comments	Citation
<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)	Repeatedly computes min-weight max matchings (complicated)	Marathe/Ravi/Sundaram/ Ravi/Rosenkrantz/Hunt III, 1998

Weight	Length	Comments	Citation
<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)	Repeatedly computes min-weight max matchings (complicated)	Marathe/Ravi/Sundaram/ Ravi/Rosenkrantz/Hunt III, 1998
$O(n^{\epsilon}e^{1/\epsilon})$	1	Running time is $n^{1/\epsilon} \cdot \operatorname{poly}(n)$	Kortsarz/Peleg, 1999

Weight	Length	Comments	Citation
<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)	Repeatedly computes min-weight max matchings (complicated)	Marathe/Ravi/Sundaram/ Ravi/Rosenkrantz/Hunt III, 1998
$O(n^{\epsilon}e^{1/\epsilon})$	1	Running time is $n^{1/\epsilon} \cdot \operatorname{poly}(n)$	Kortsarz/Peleg, 1999
$O(n^{\epsilon}/\epsilon)$	<i>O</i> (1/ <i>\epsilon</i>)	Cool	Us

Initially all vertices are active

Initially all vertices are **active** For $O(1/\epsilon)$ rounds...

Initially all vertices are active For $O(1/\epsilon)$ rounds...

1. Sample each active vertex independently with probability $n^{-\epsilon}$

Initially all vertices are **active** For $O(1/\epsilon)$ rounds...

- 1. Sample each active vertex independently with probability $n^{-\epsilon}$
- 2. For each non-sampled vertex u, add the cheapest L-bounded path from u to a sampled vertex to our subgraph

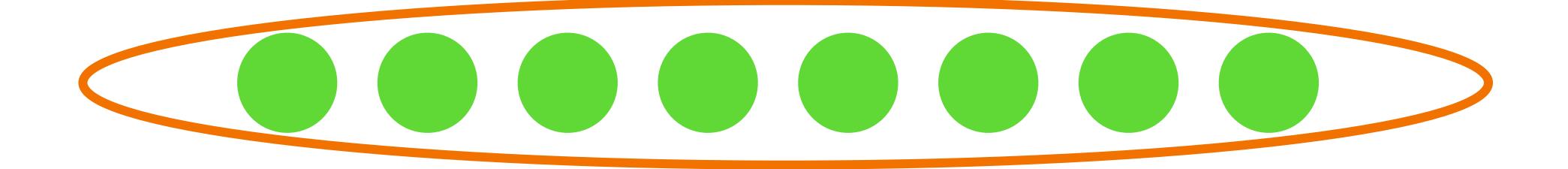
Initially all vertices are **active** For $O(1/\epsilon)$ rounds...

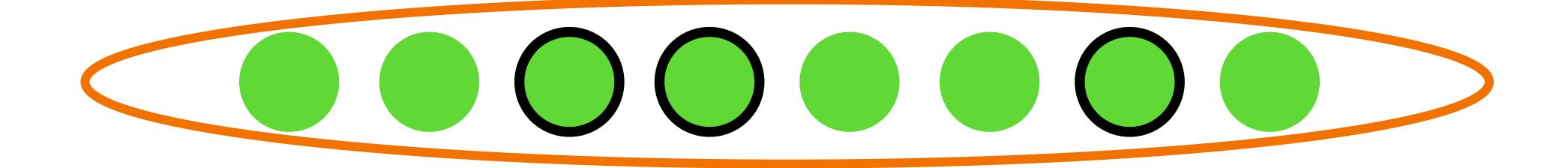
- 1. Sample each active vertex independently with probability $n^{-\epsilon}$
- 2. For each non-sampled vertex u, add the cheapest L-bounded path from u to a sampled vertex to our subgraph
- 3. Deactivate all non-sampled vertices

Initially all vertices are **active** For $O(1/\epsilon)$ rounds...

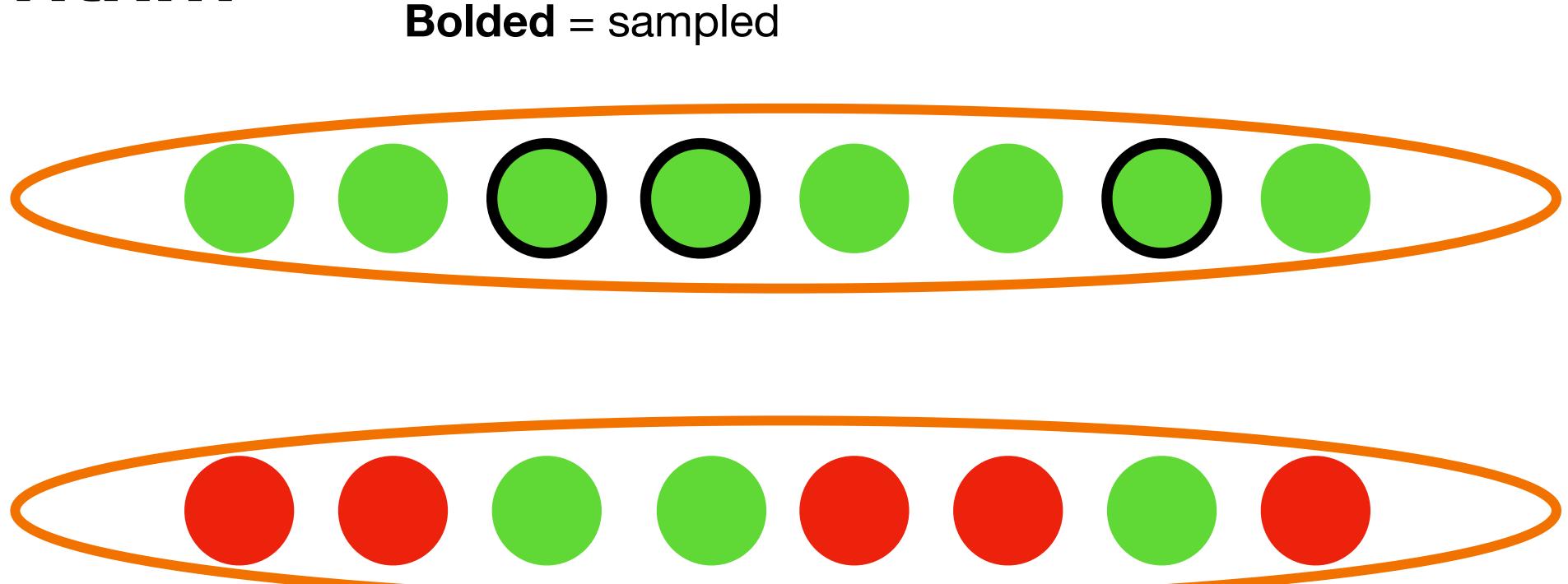
- 1. Sample each active vertex independently with probability $n^{-\epsilon}$
- 2. For each non-sampled vertex u, add the cheapest L-bounded path from *u* to a sampled vertex to our subgraph
- 3. Deactivate all non-sampled vertices

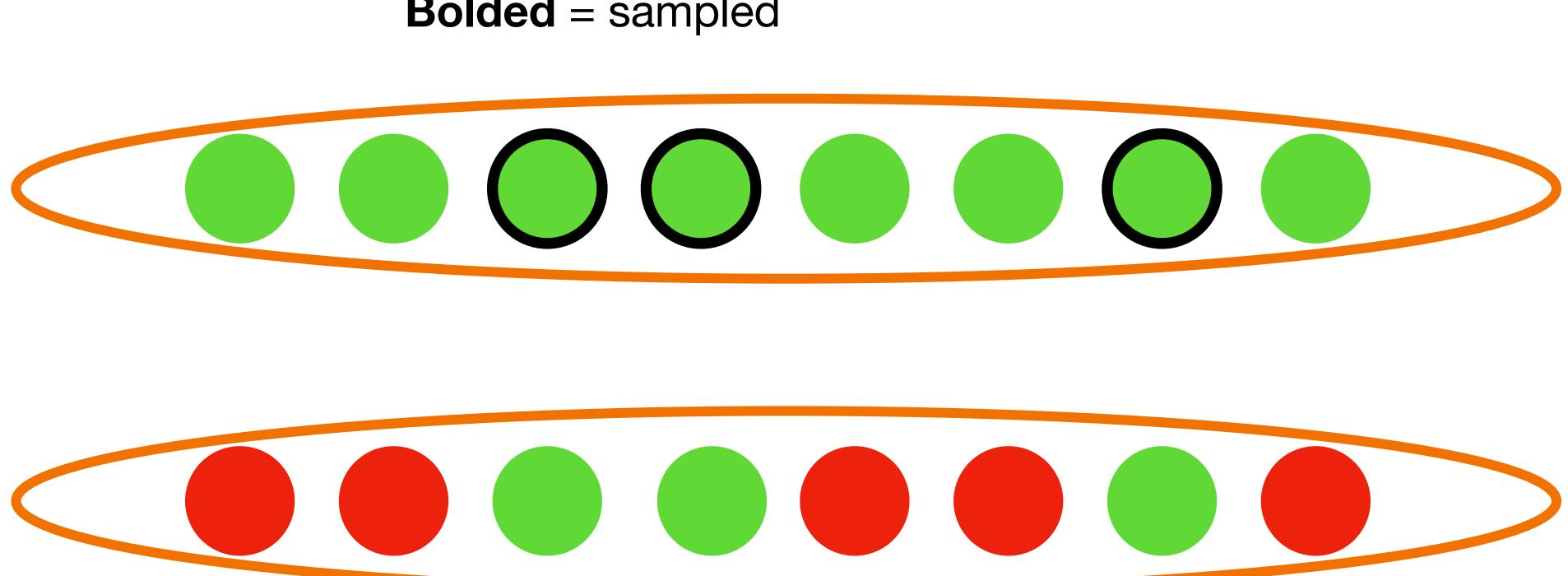
Return a shortest-path tree of our subgraph



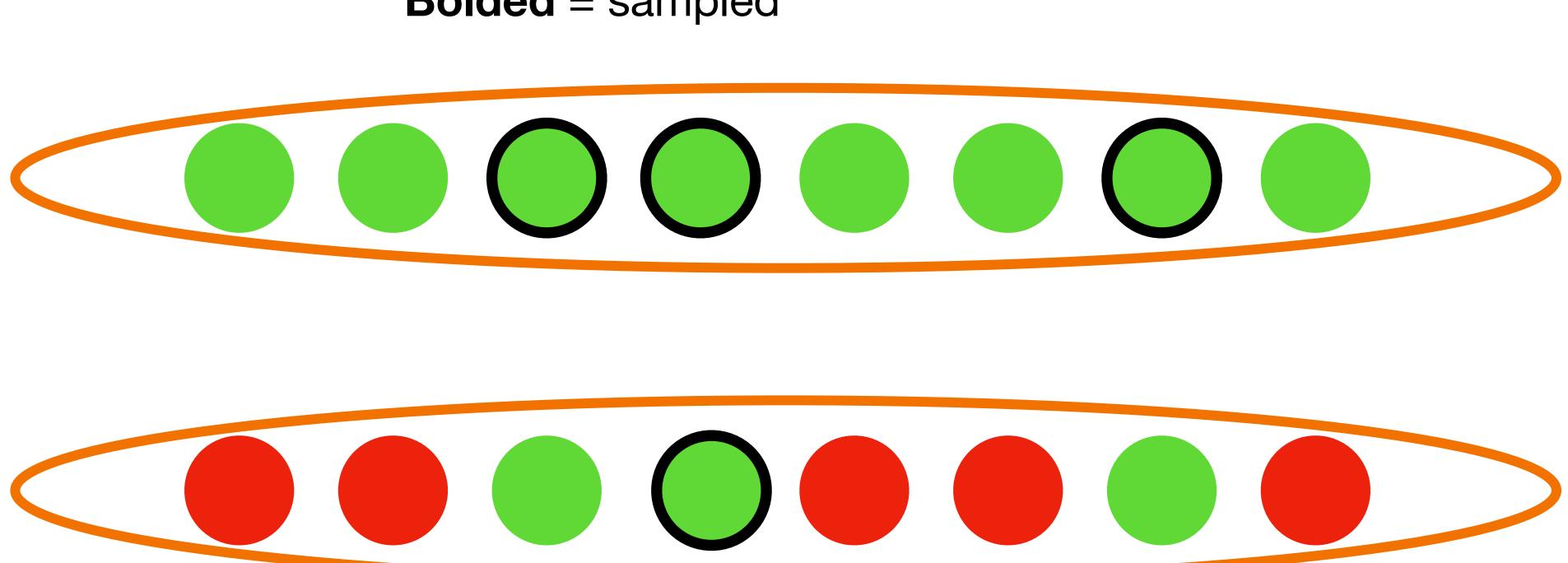


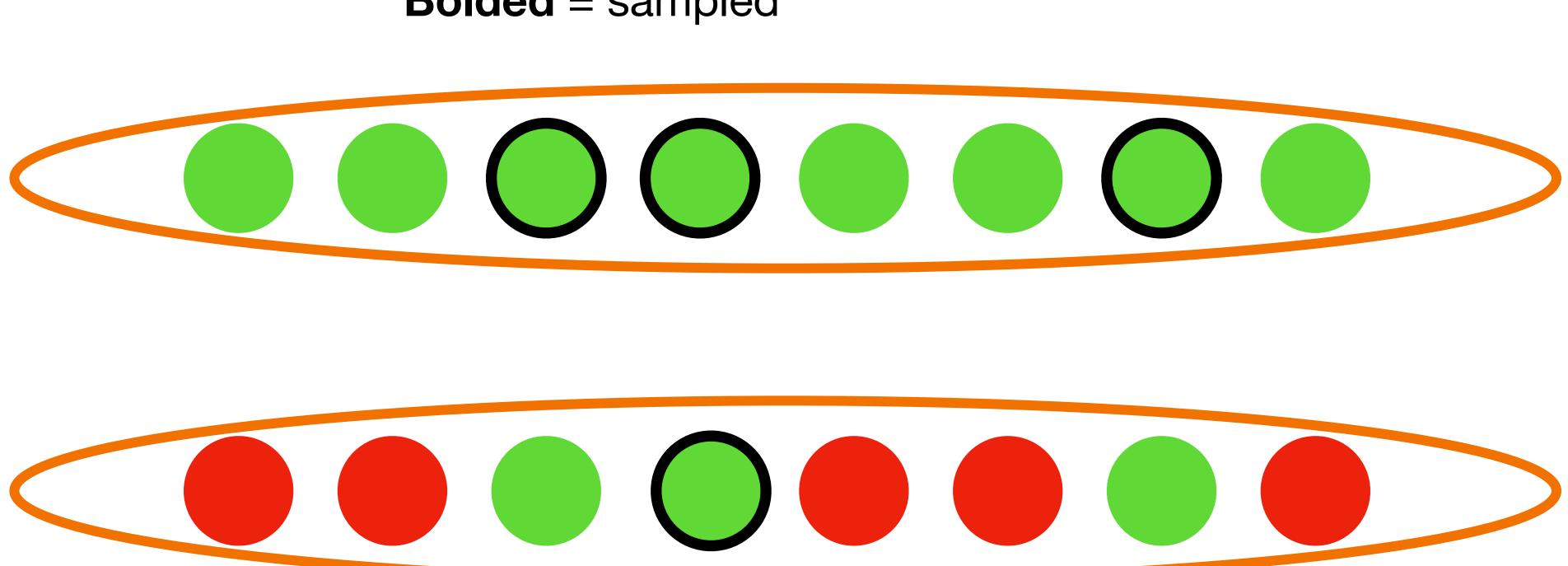
Red = deactivated

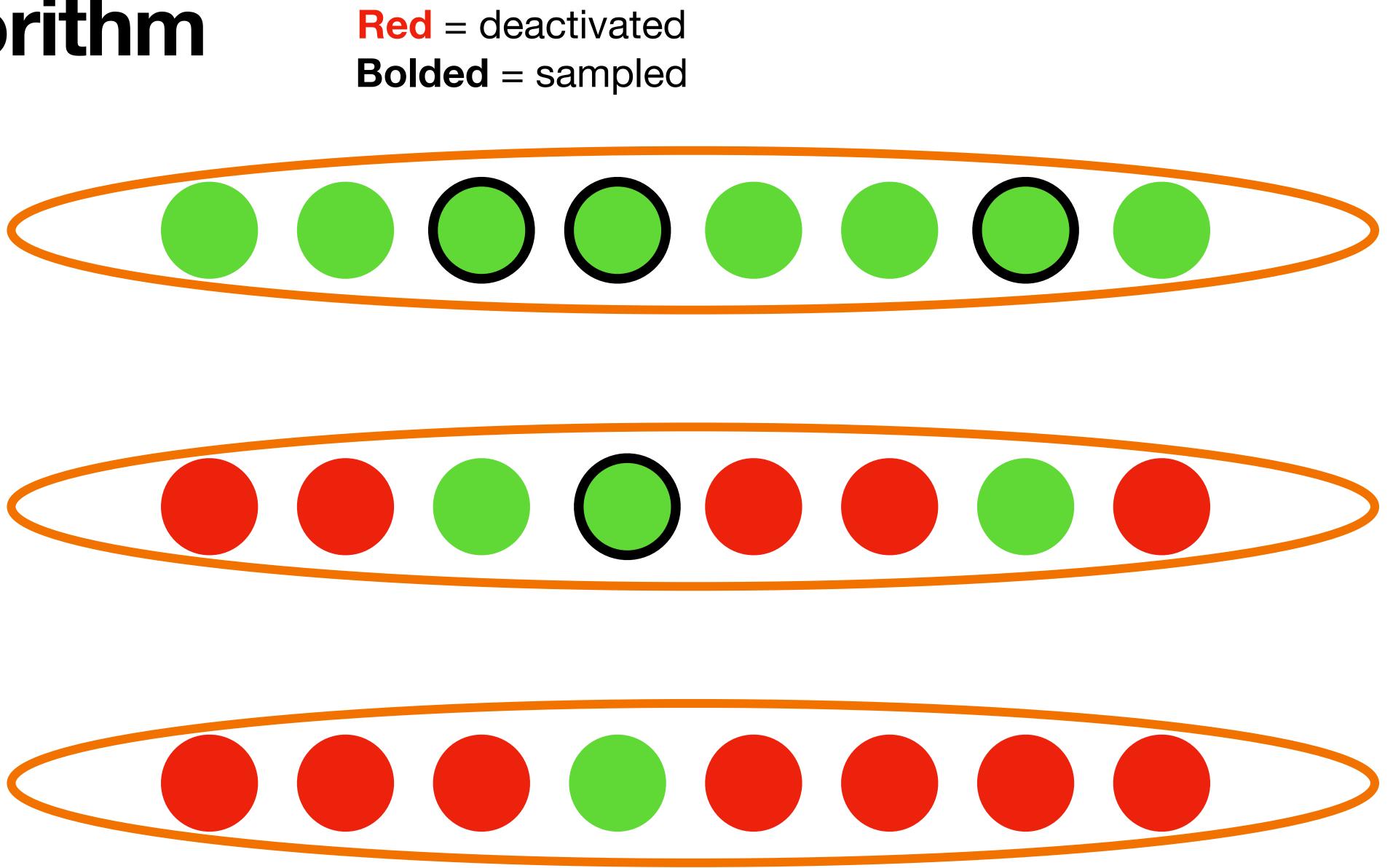


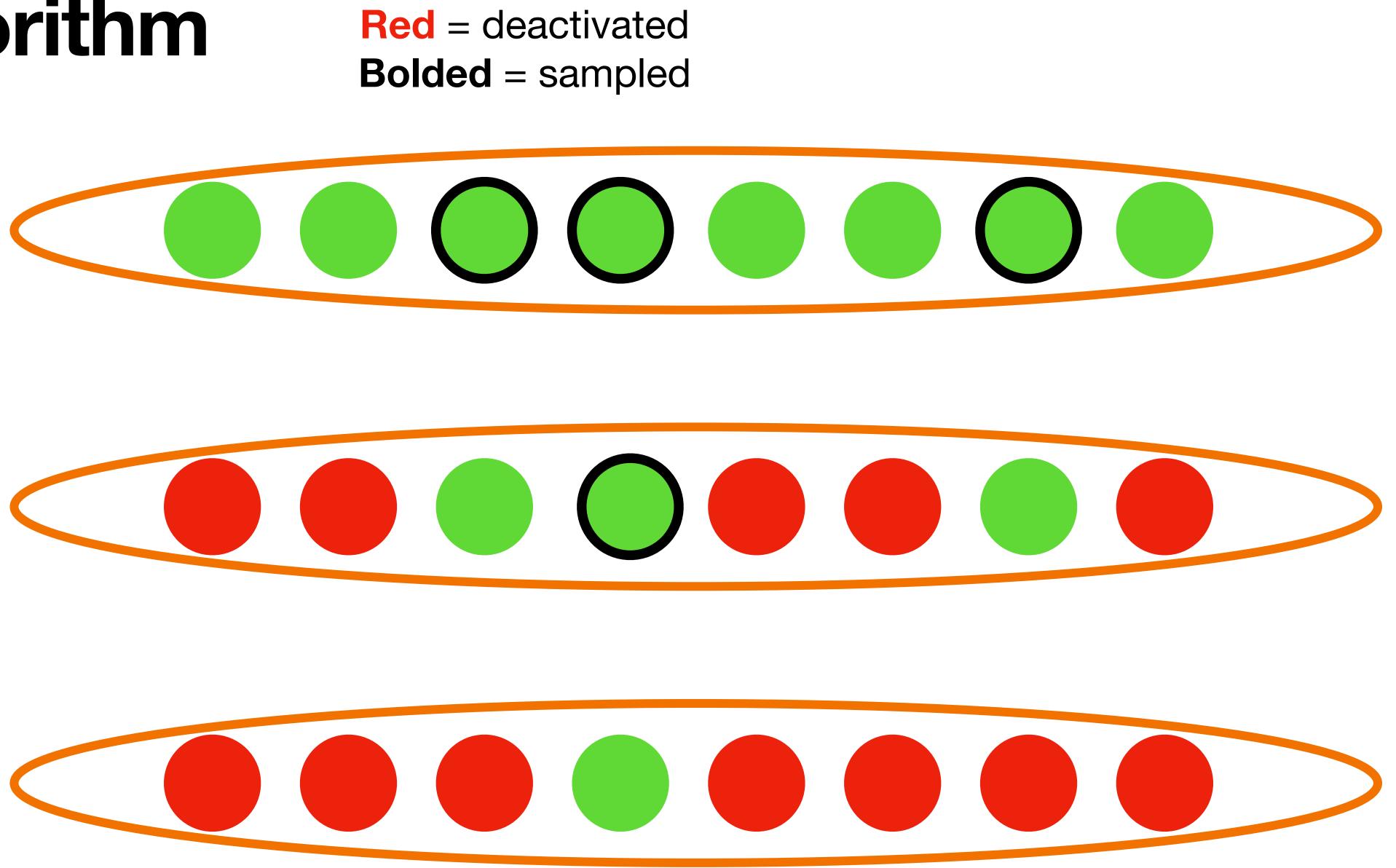


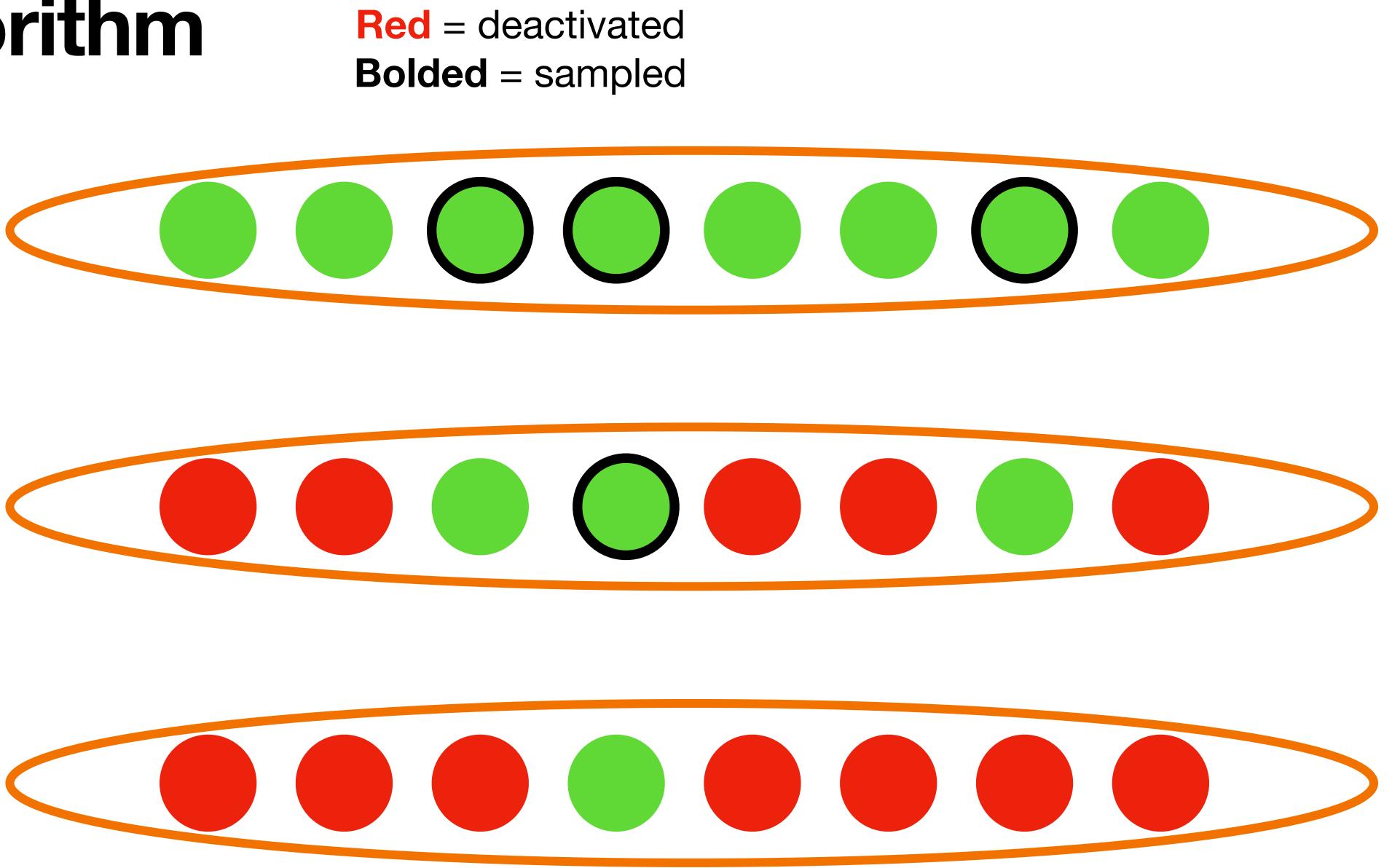
Red = deactivated **Bolded** = sampled

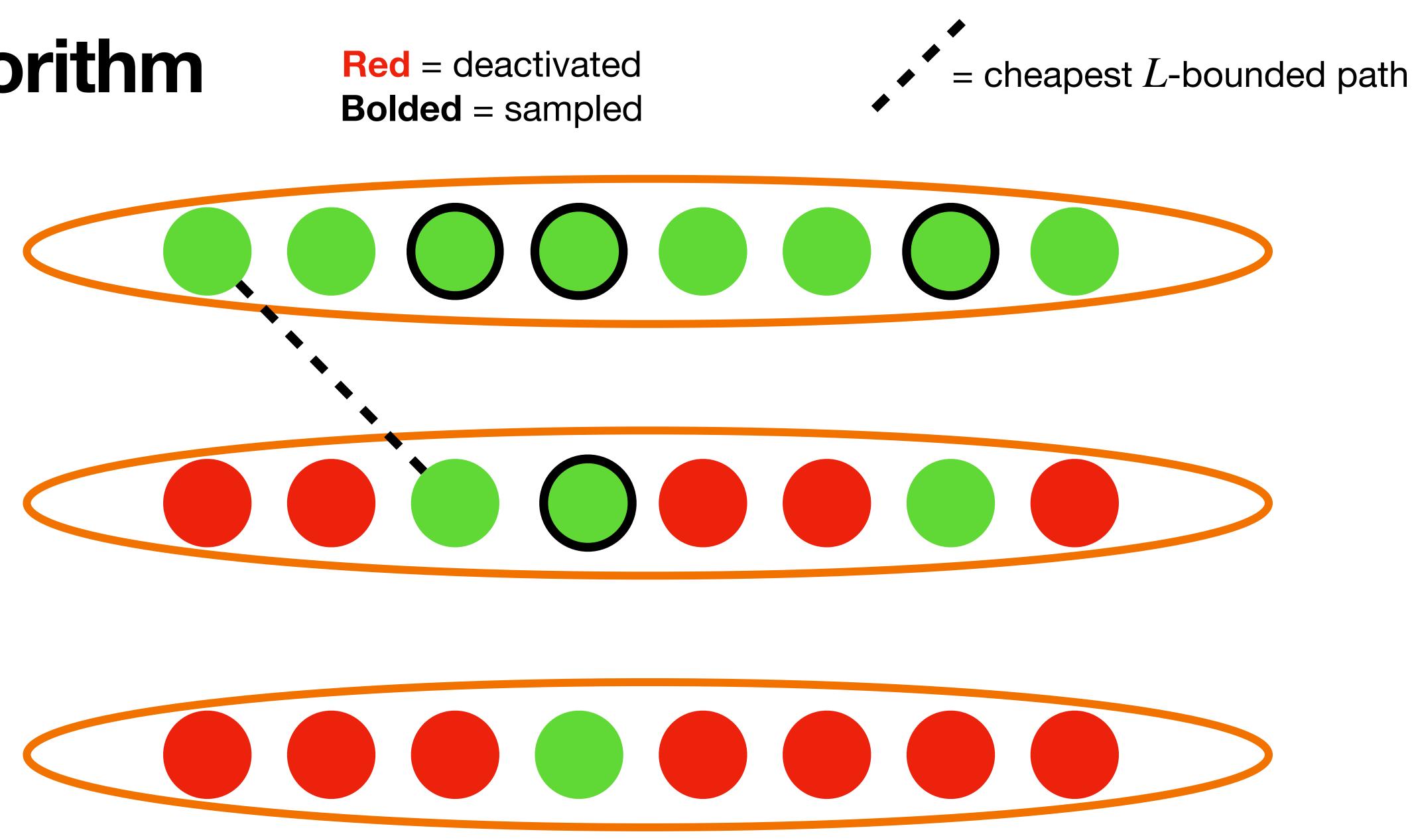


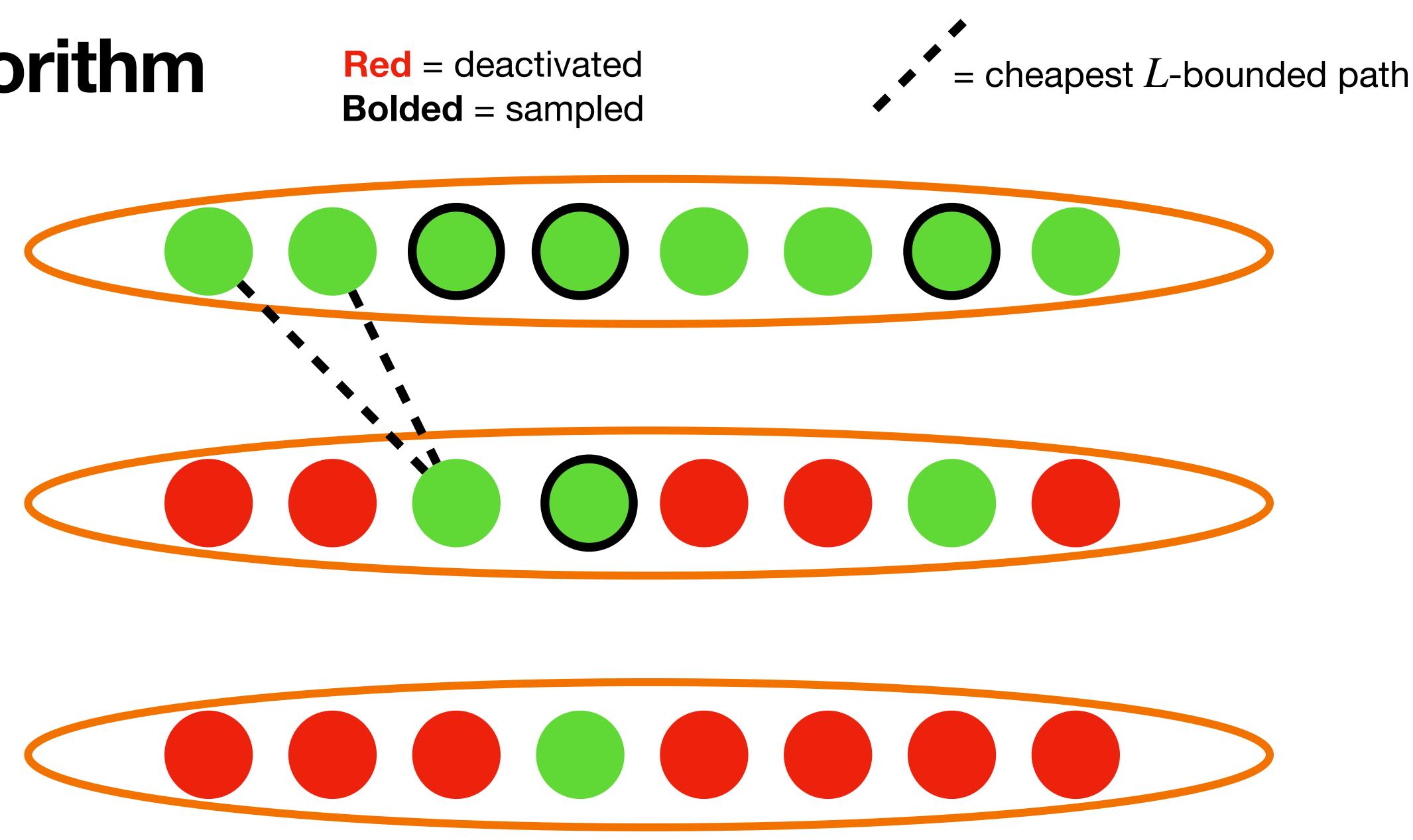


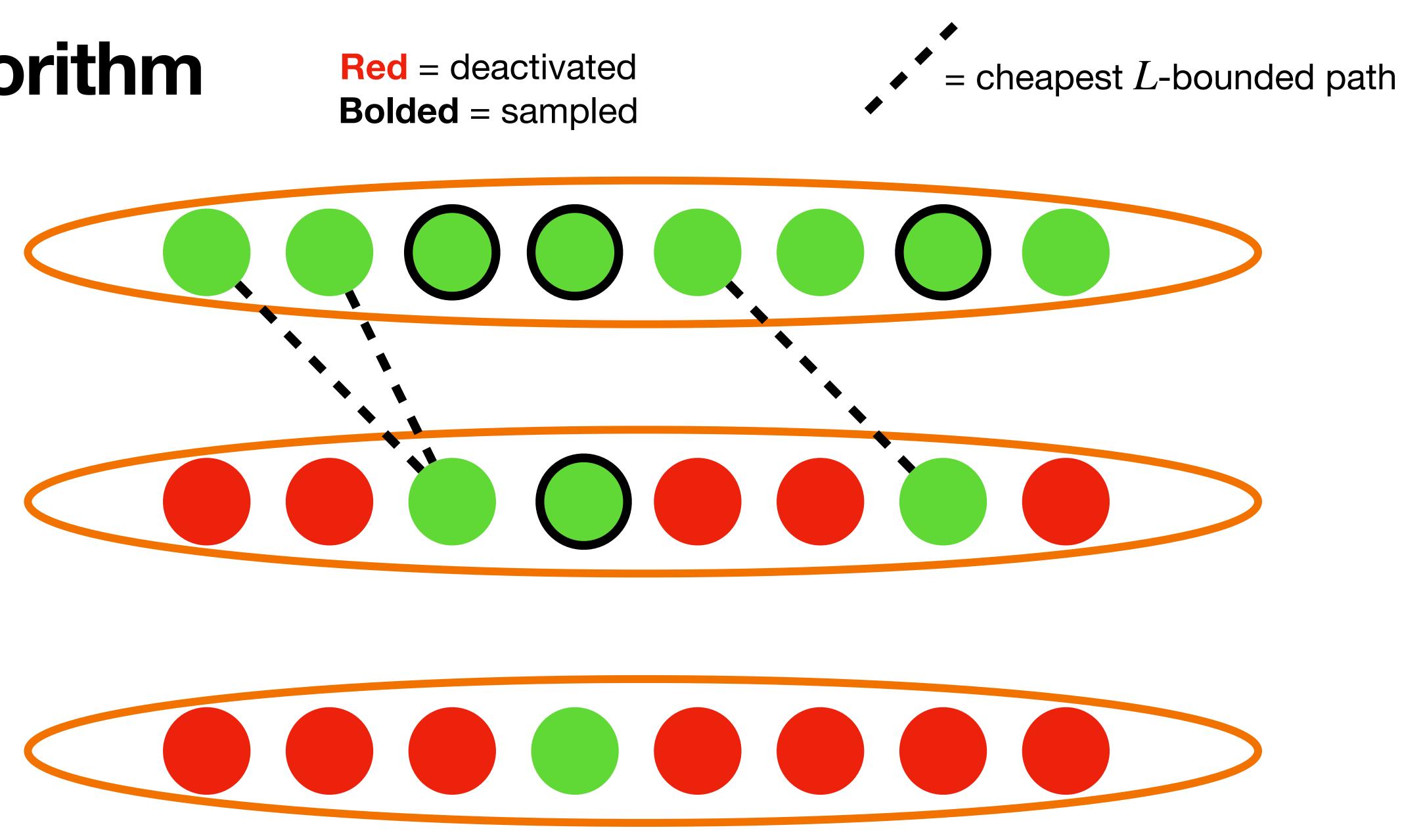


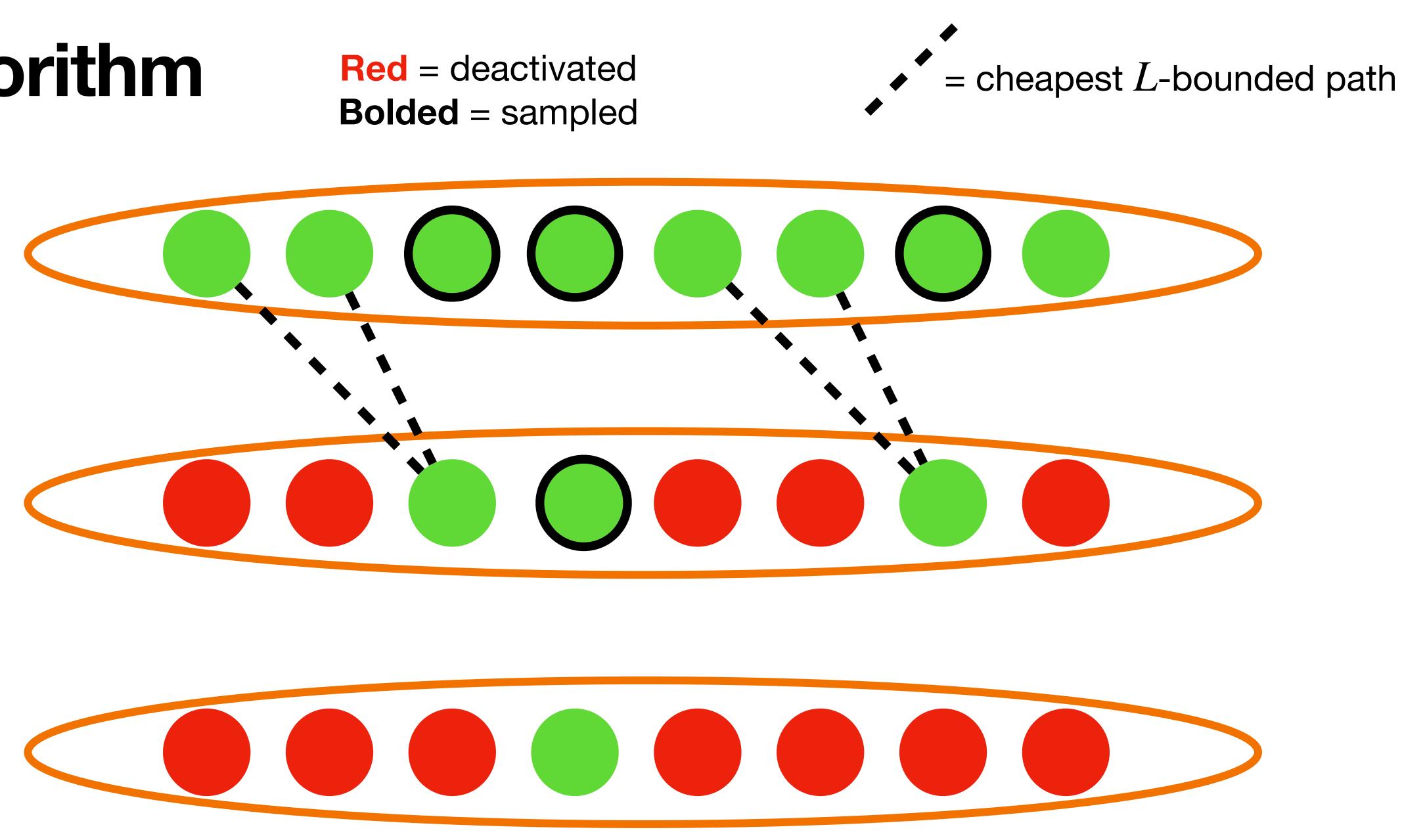


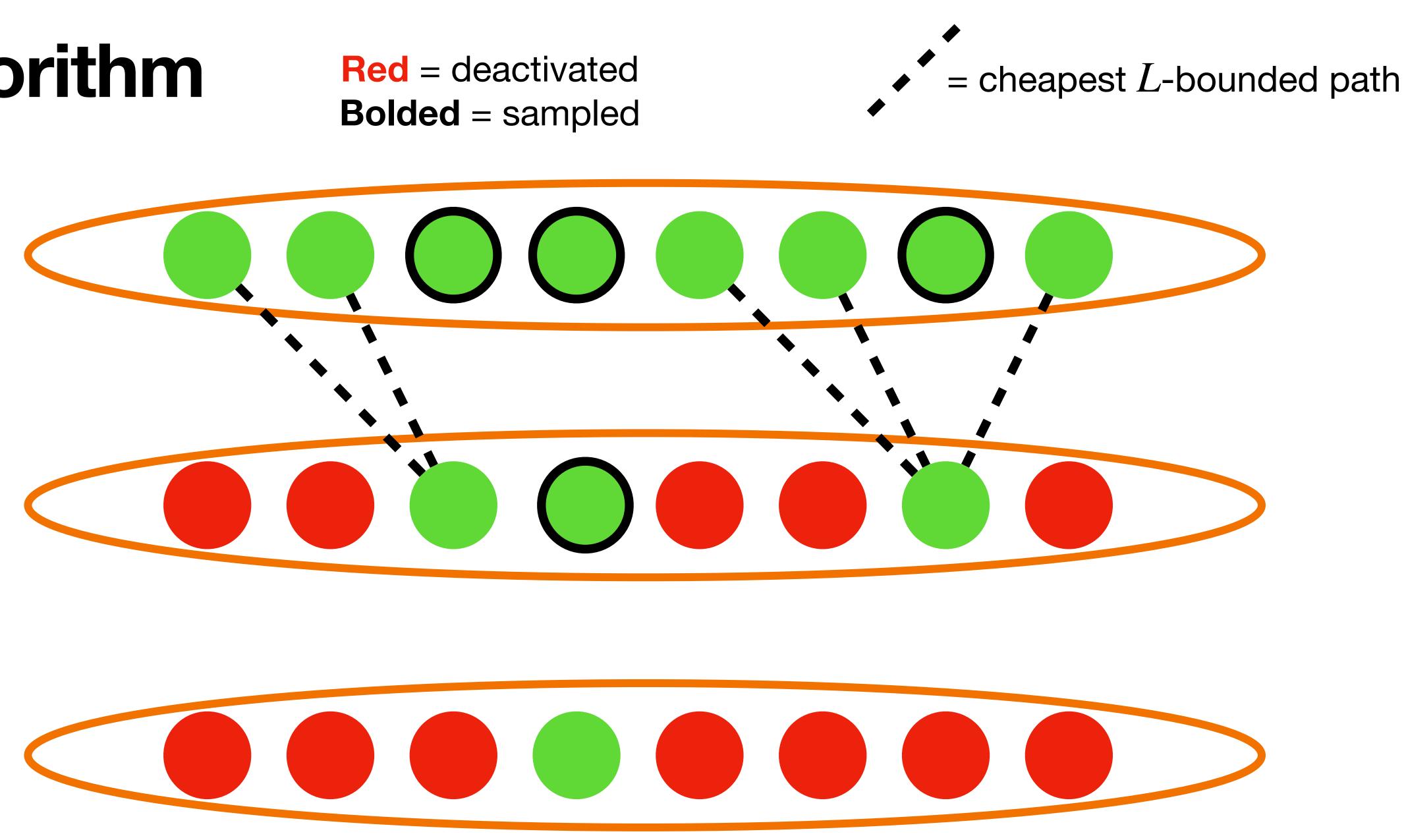


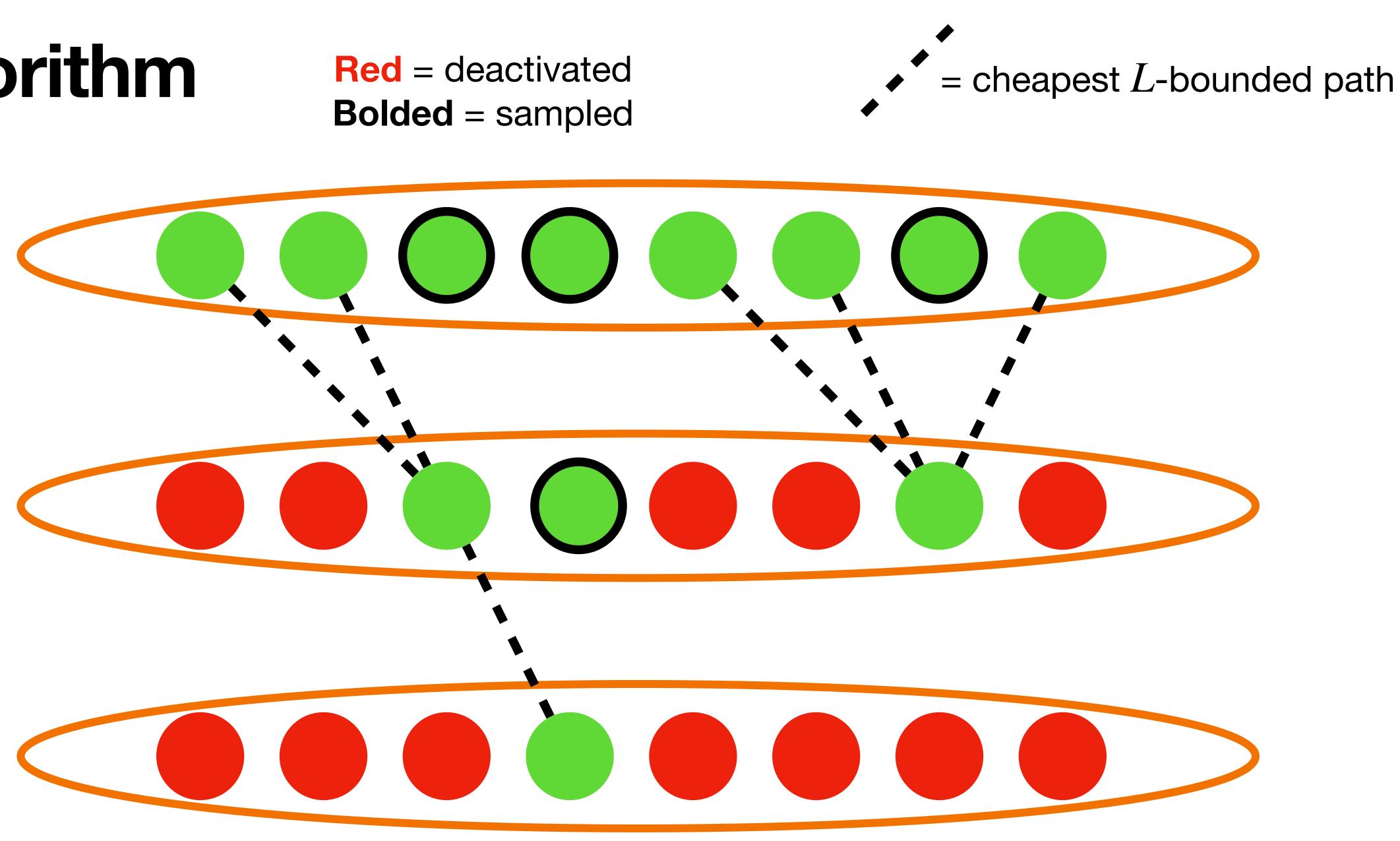


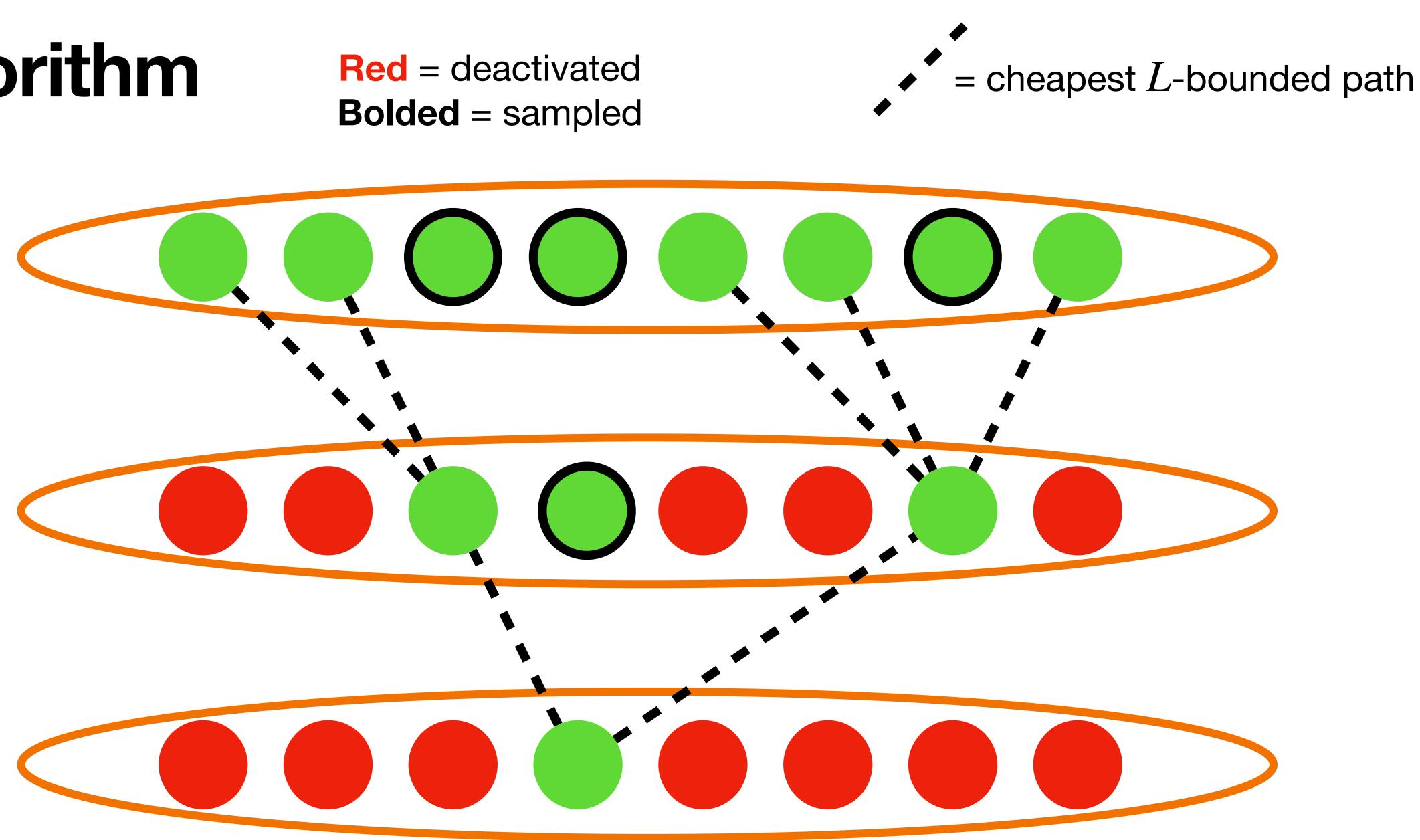


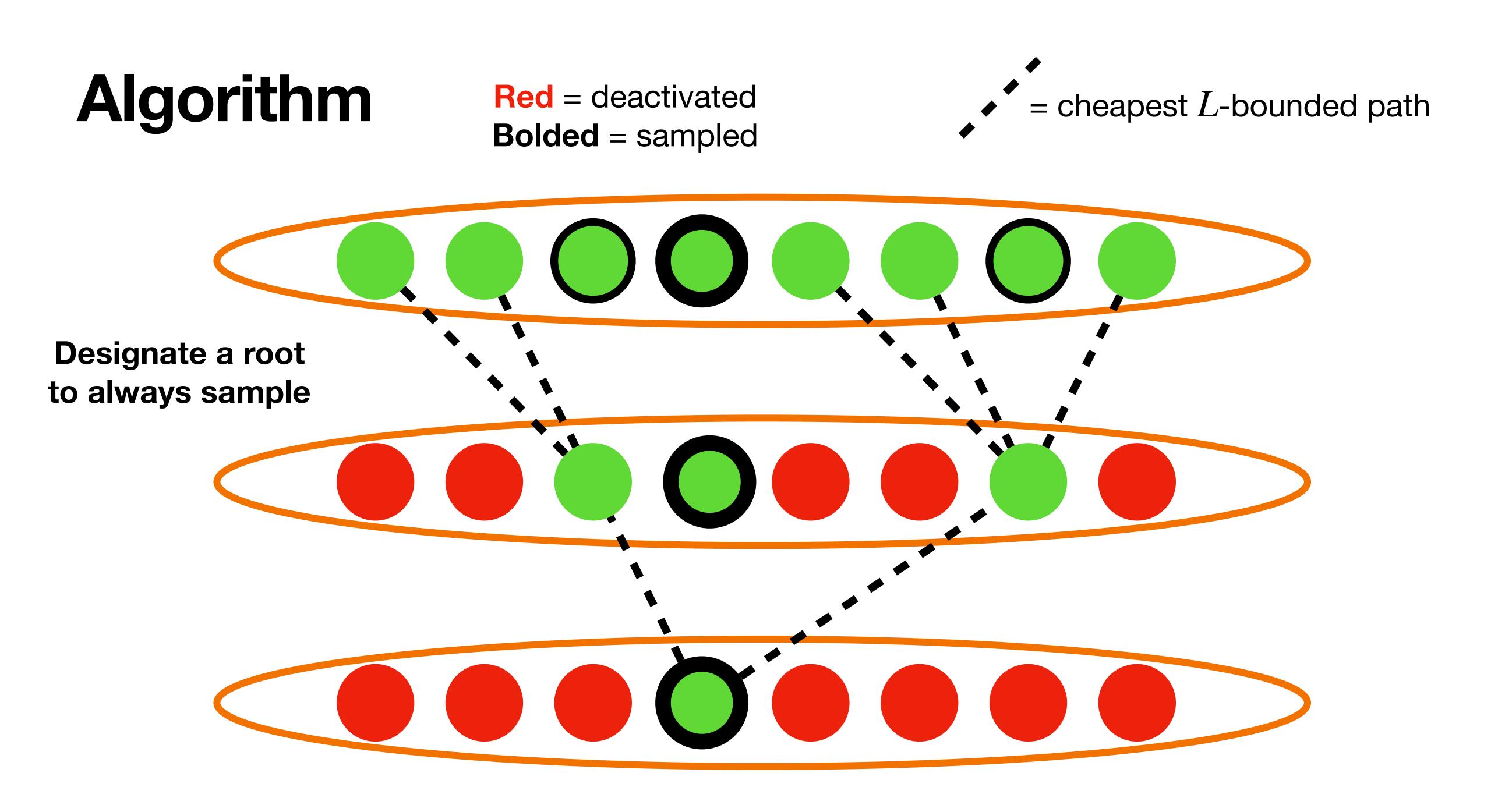


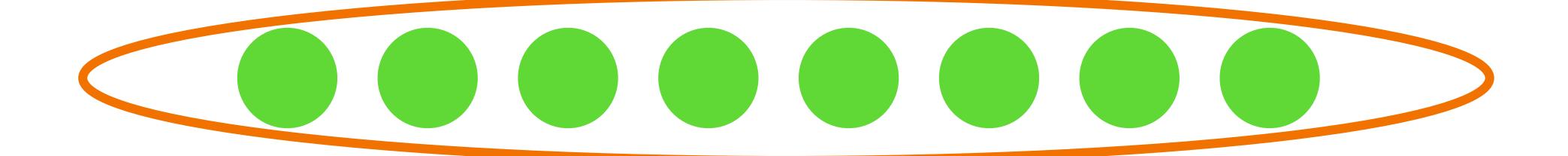




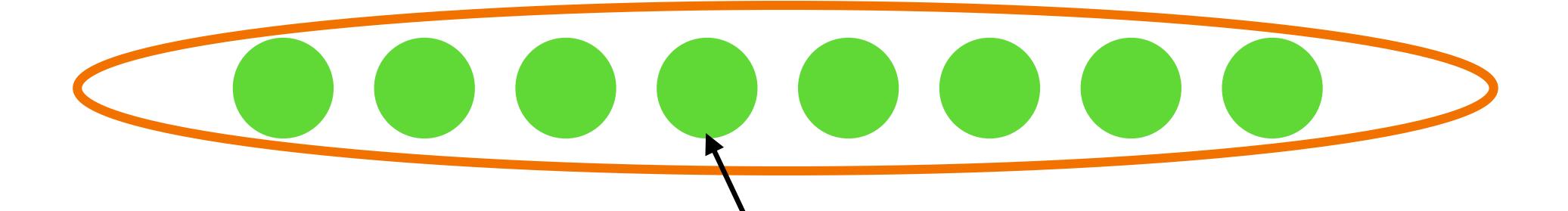








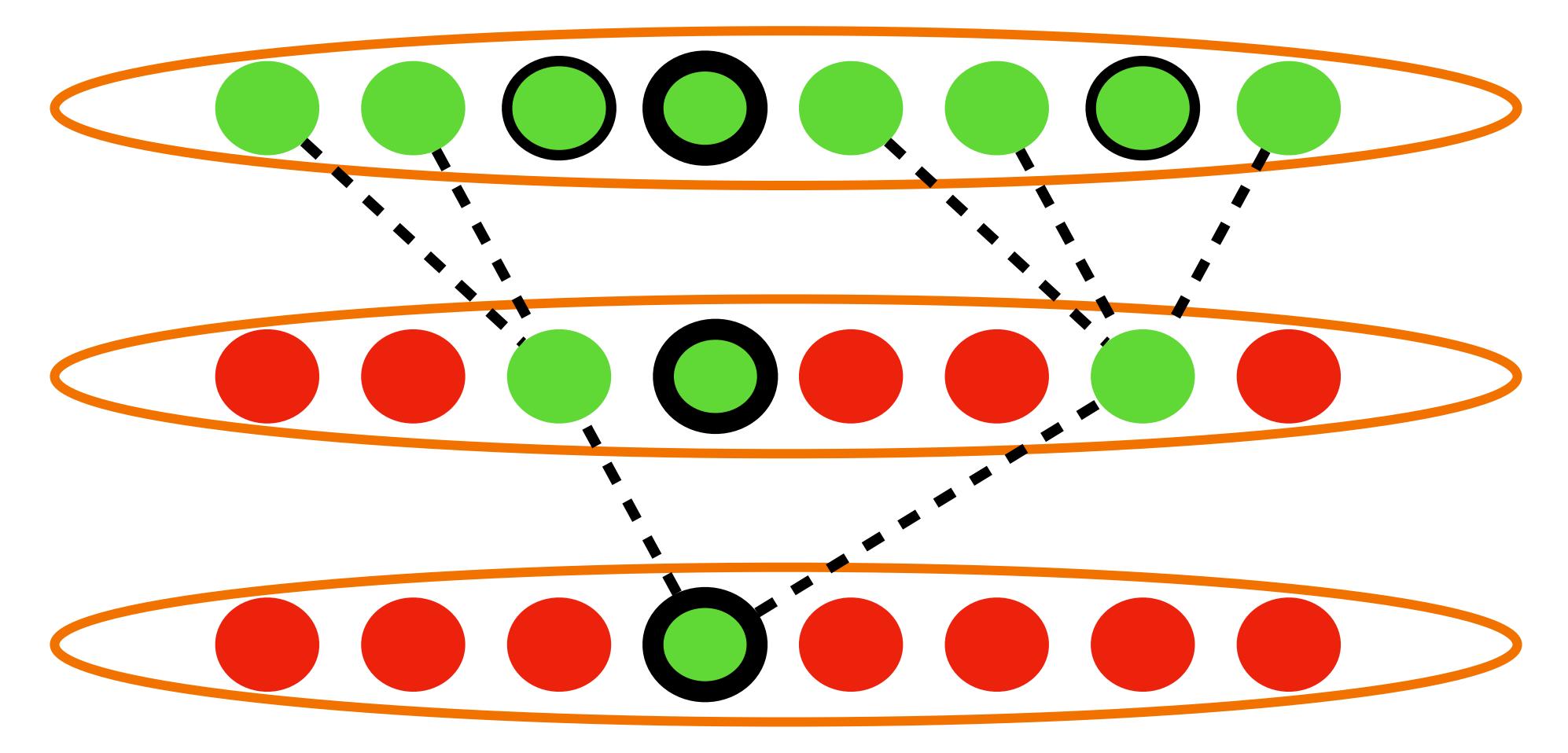
All vertices are deactivated after $O(1/\epsilon)$ rounds with high probability



Sampled independently w.p. $n^{-\epsilon}$, so after enough rounds it will be nonsampled + deactivated w.h.p.

Then all vertices are connected by some path to the root

Then all vertices are connected by some path to the root



We add paths of length at most L for $O(1/\epsilon)$ rounds

We add paths of length at most L for $O(1/\epsilon)$ rounds \implies Subgraph has length $O(1/\epsilon) \cdot L$

We add paths of length at most L for $O(1/\epsilon)$ rounds \implies Subgraph has length $O(1/\epsilon) \cdot L$

Weight Bound

Weight Bound

Idea: compare how a worse algorithm does on a structured graph.

Weight Bound

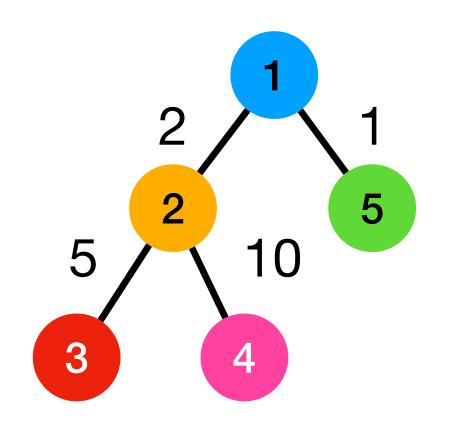
Idea: compare how a worse algorithm does on a structured graph.

our alg weight \leq worse alg weight $\leq O(n^{\epsilon}/\epsilon) \cdot OPT_L$

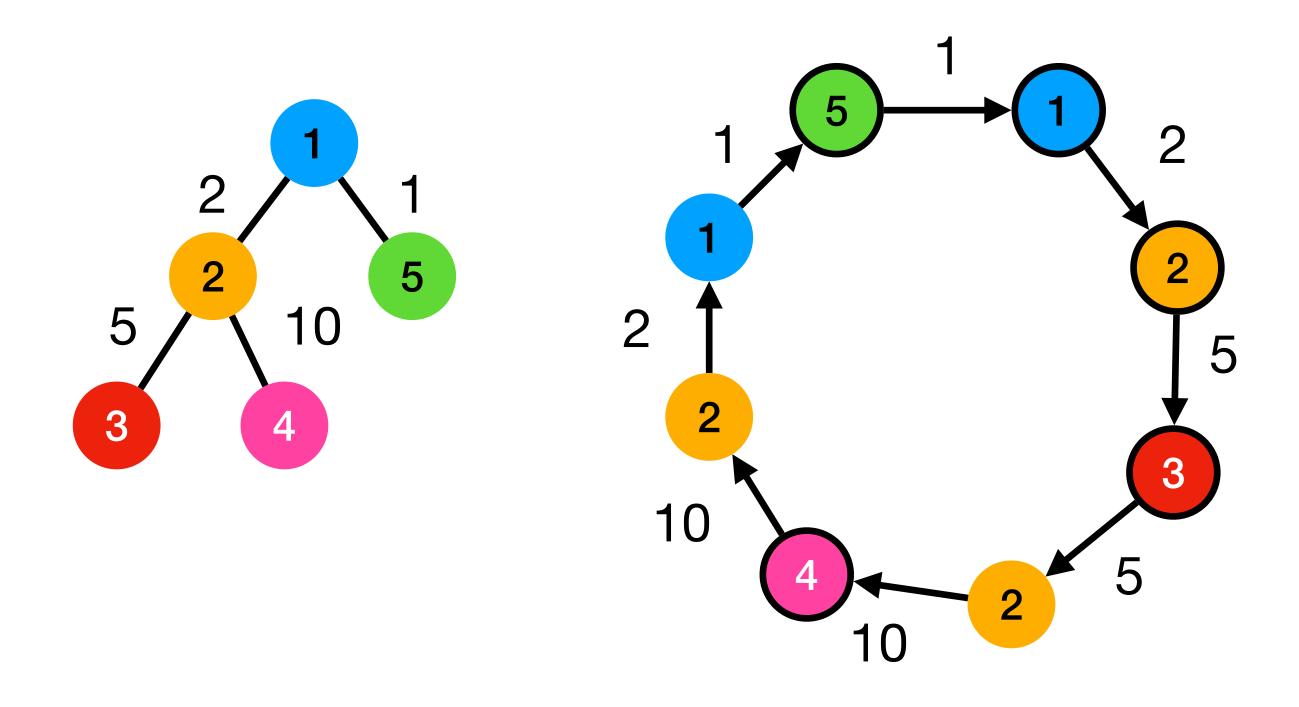
Structured graph: a contracted Euler tour of an optimal solution

Structured graph: a contracted Euler tour of an optimal solution

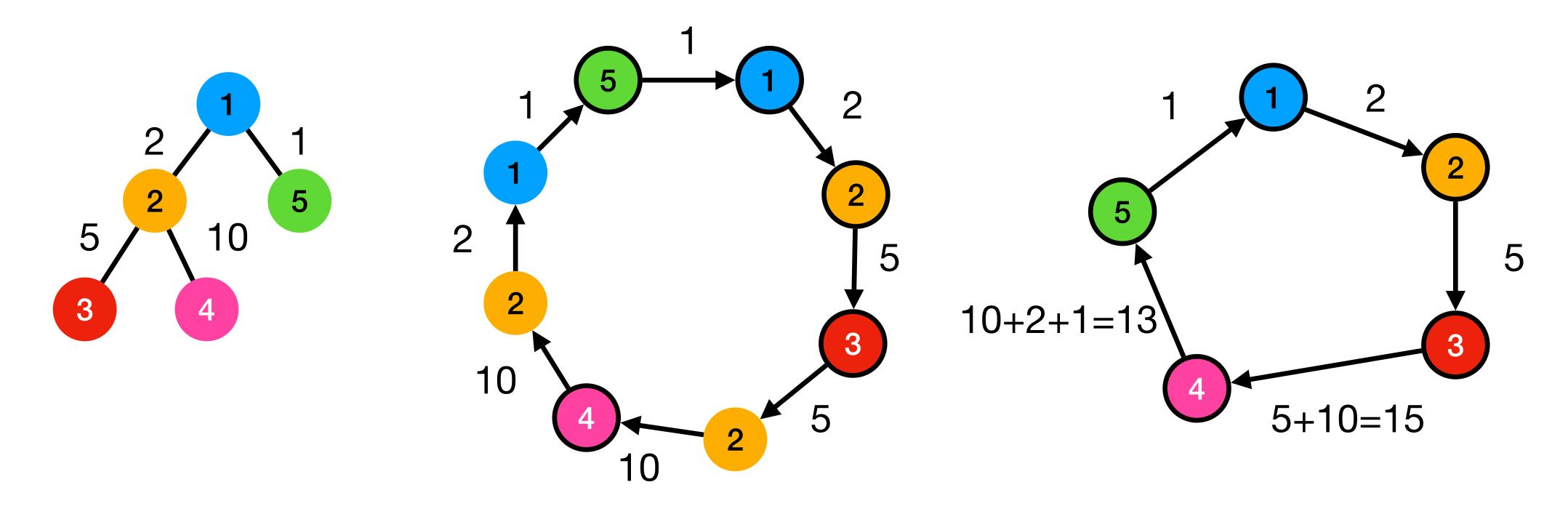
Optimal tree



Structured graph: a contracted Euler tour of an optimal solution

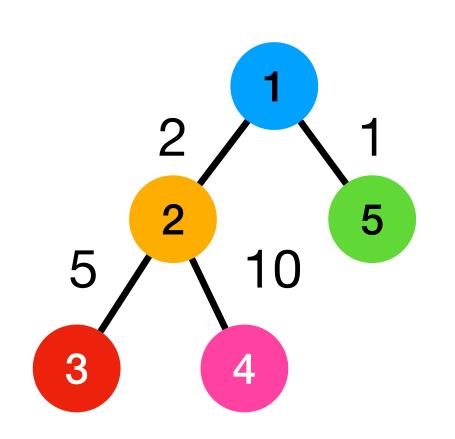


Structured graph: a contracted Euler tour of an optimal solution



Contracted

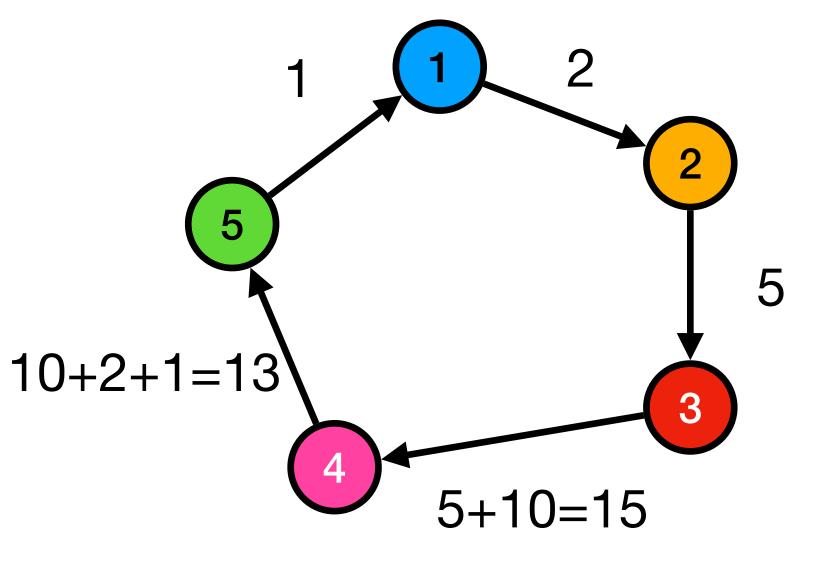
Optimal tree



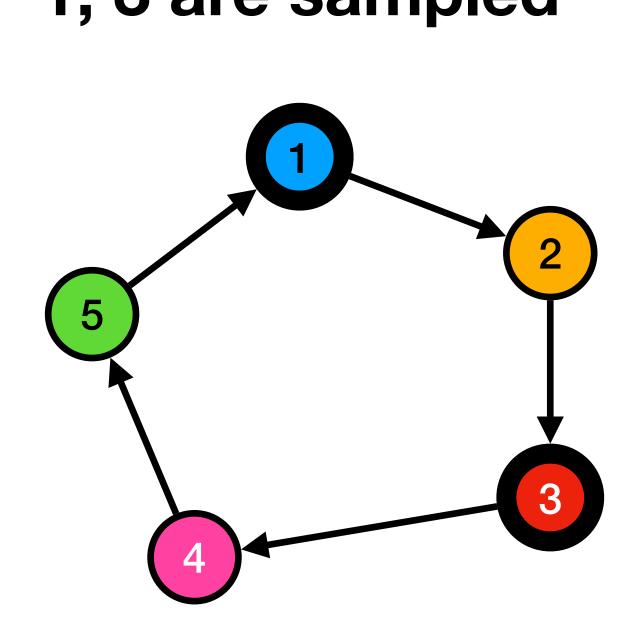
Total sum of edge weights in **contracted Euler** tour is $(\mathsf{OPT}_I) !!$

Structured graph: a contracted Euler tour of an optimal solution

Contracted

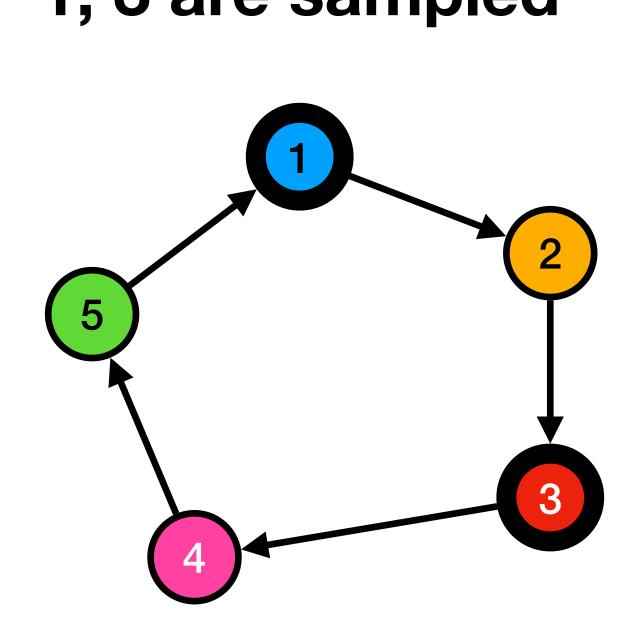


Worse algorithm: charge the weight of the path from each non-sampled vertex to its nearest sampled vertex in the contracted Euler tour



Worse algorithm: charge the weight of the path from each non-sampled vertex to its nearest sampled vertex in the contracted Euler tour

1, 3 are sampled

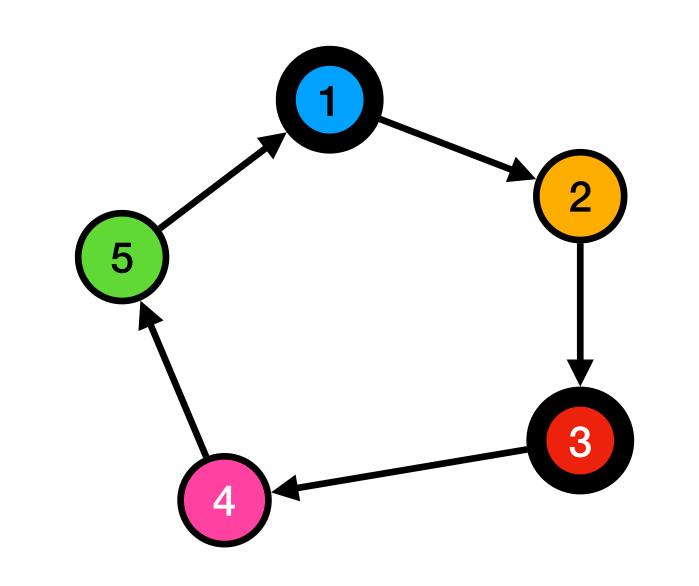


Worse algorithm: charge the weight of the path from each non-sampled vertex to its nearest sampled vertex in the contracted Euler tour

1, 3 are sampled

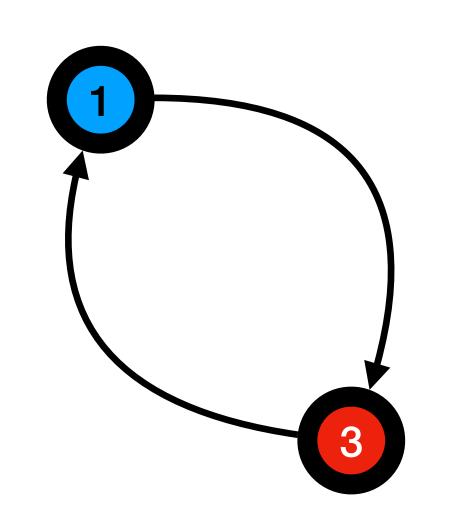
Charge the paths: (2,3)(4,1) (5,1)

Deactivate non-sampled vertices and repeat



Worse algorithm: charge the weight of the path from each non-sampled vertex to its nearest sampled vertex in the contracted Euler tour

Deactivate non-sampled vertices and repeat



Worse algorithm: charge the weight of the path from each non-sampled vertex to its nearest sampled vertex in the contracted Euler tour

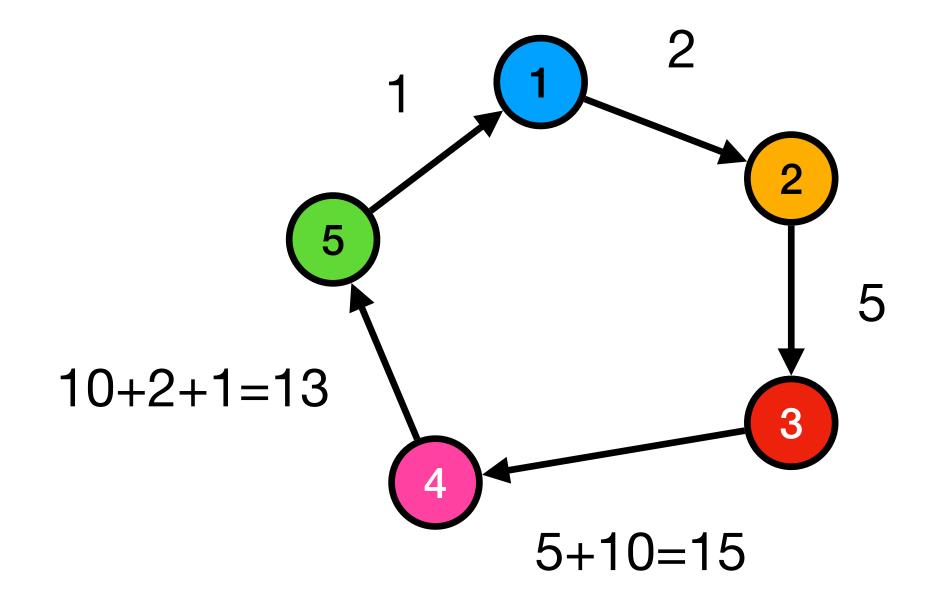
Why worse?

Why worse?

Worse alg charges L-bounded paths from the ET (could be arbitrarily high in weight)

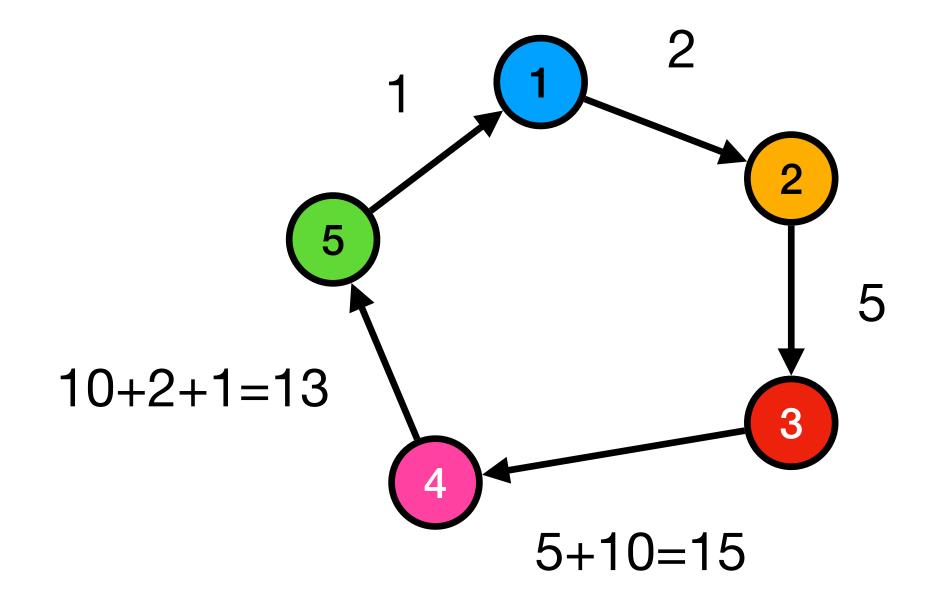
Why worse?

Worse alg charges L-bounded paths from the ET (could be arbitrarily high in weight)



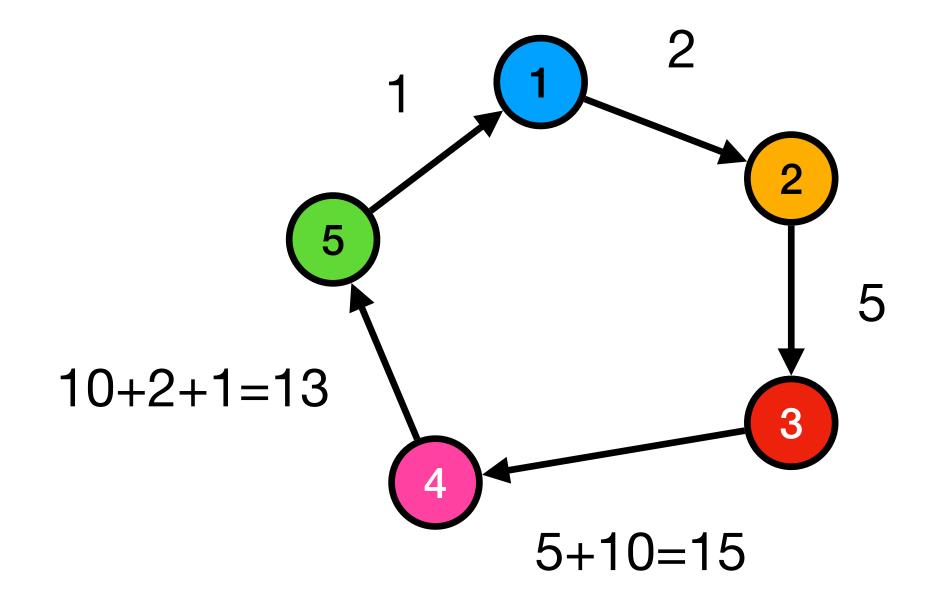
Why worse?

Worse alg charges L-bounded paths from the ET (could be arbitrarily high in weight)



Why worse?

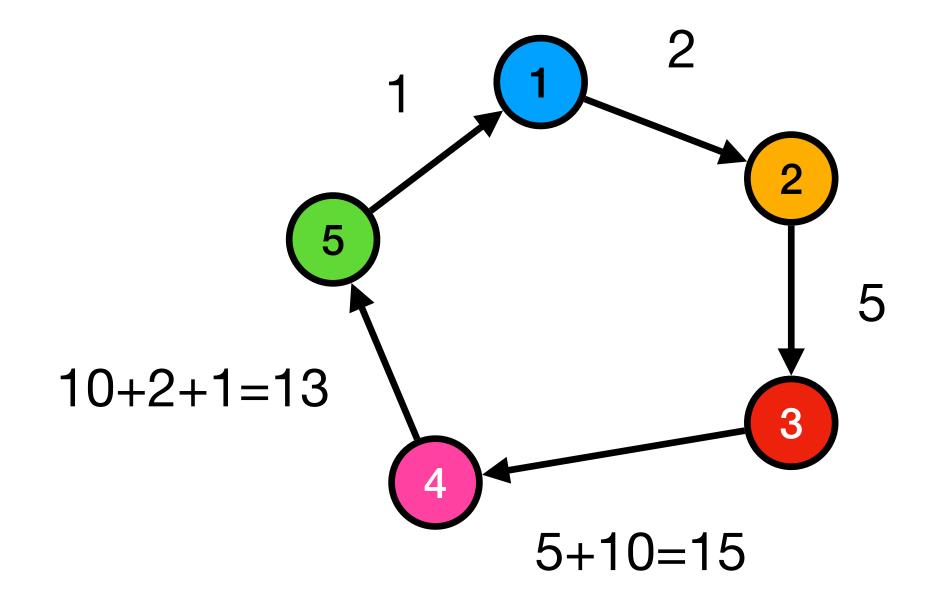
Worse alg charges L-bounded paths from the ET (could be arbitrarily high in weight)



from But our alg chooses the **min**eight) **weight** *L*-bounded paths

Why worse?

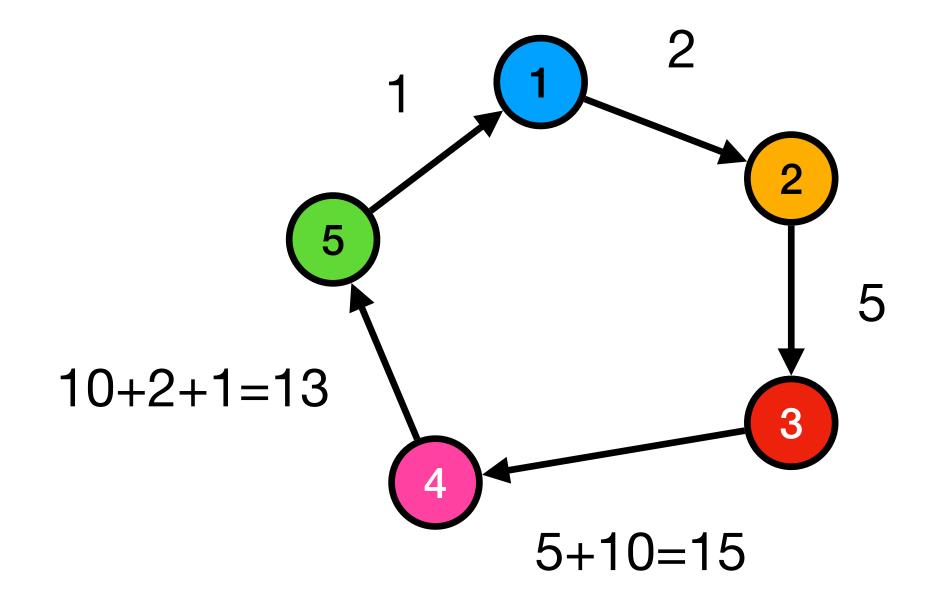
Worse alg charges L-bounded paths from the ET (could be arbitrarily high in weight)



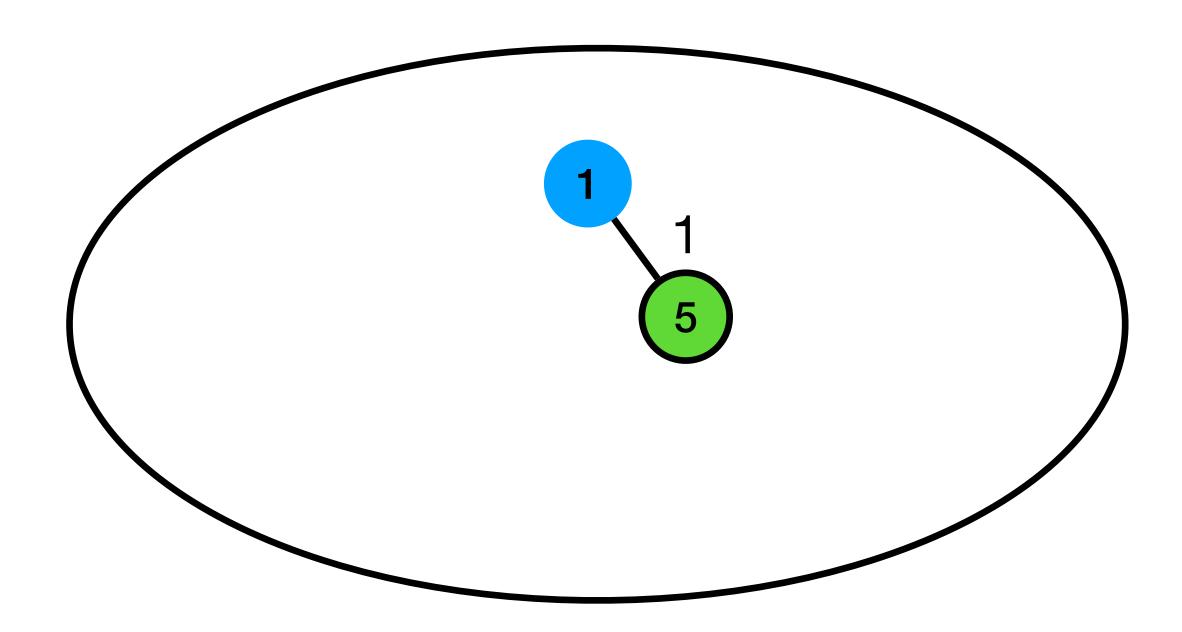
from But our alg chooses the **min**eight) **weight** *L*-bounded paths

Why worse?

Worse alg charges L-bounded paths from the ET (could be arbitrarily high in weight)



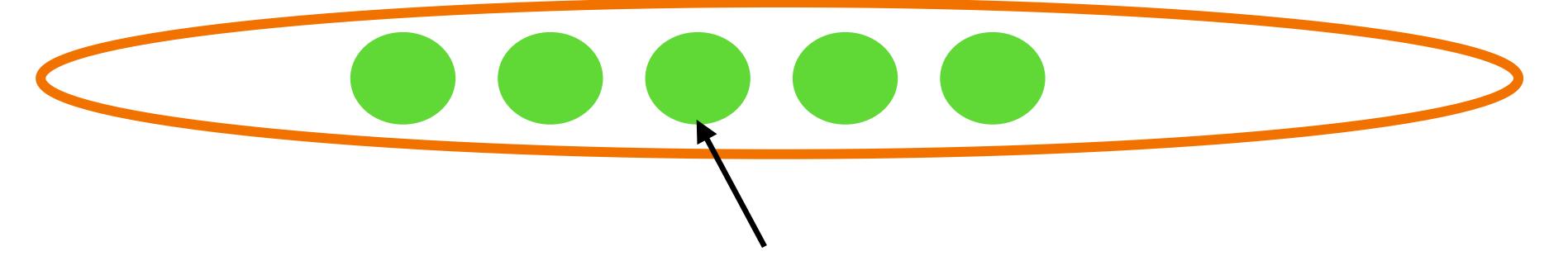
from But our alg chooses the **min**eight) **weight** *L*-bounded paths



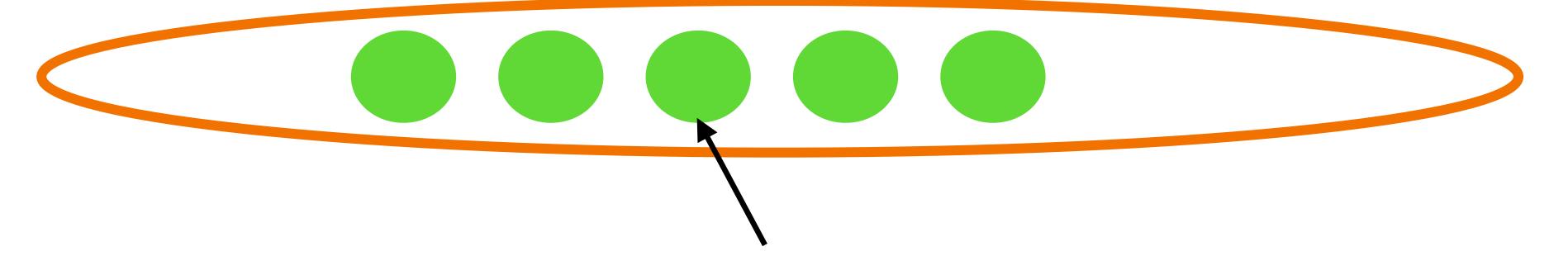
So our algorithm's weight is at most the worse algorithm's weight

So our algorithm's weight is at most the worse algorithm's weight

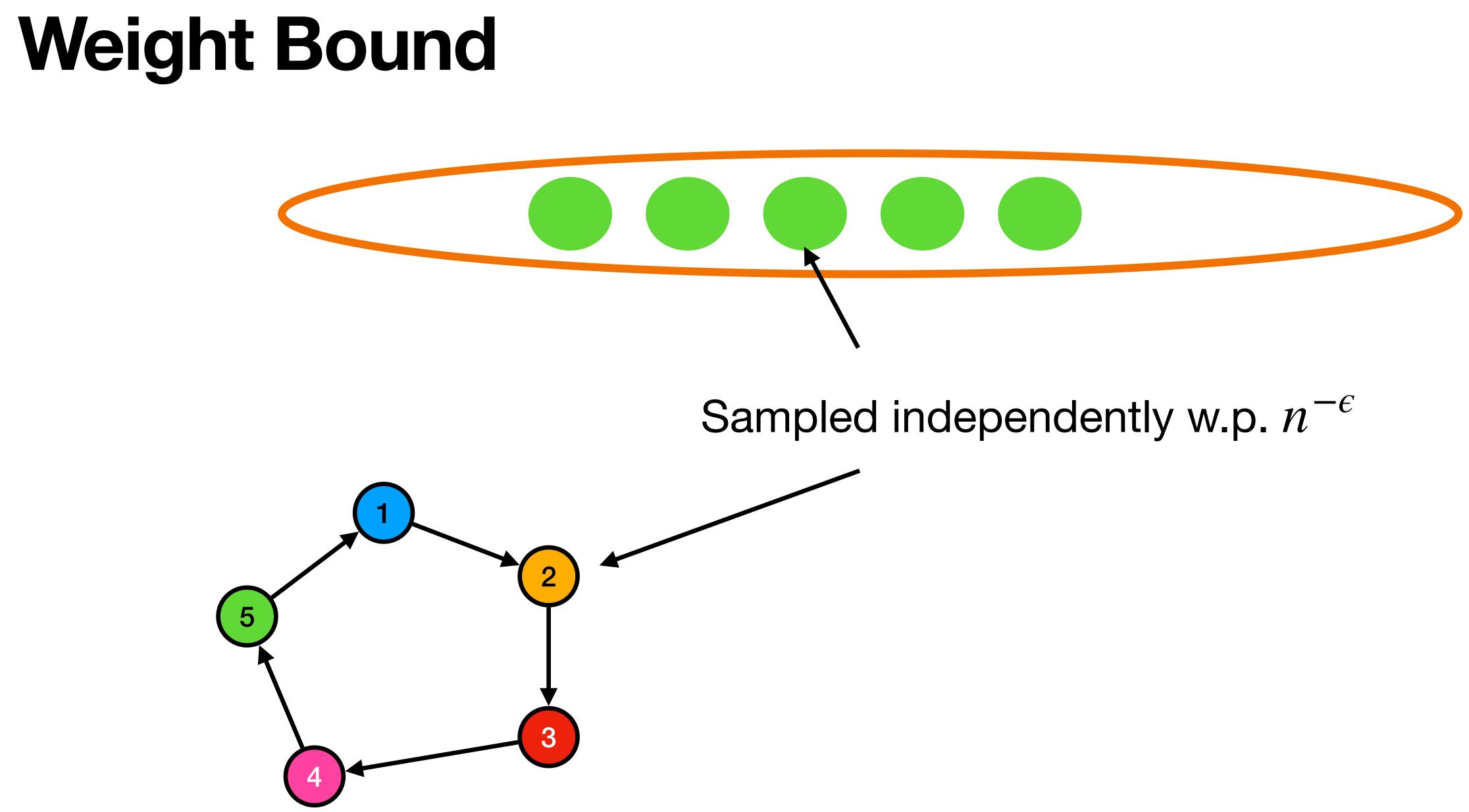
Now just show that the worse algorithm's weight is at most $O(n^{\epsilon}/\epsilon) \cdot \text{OPT}_L$

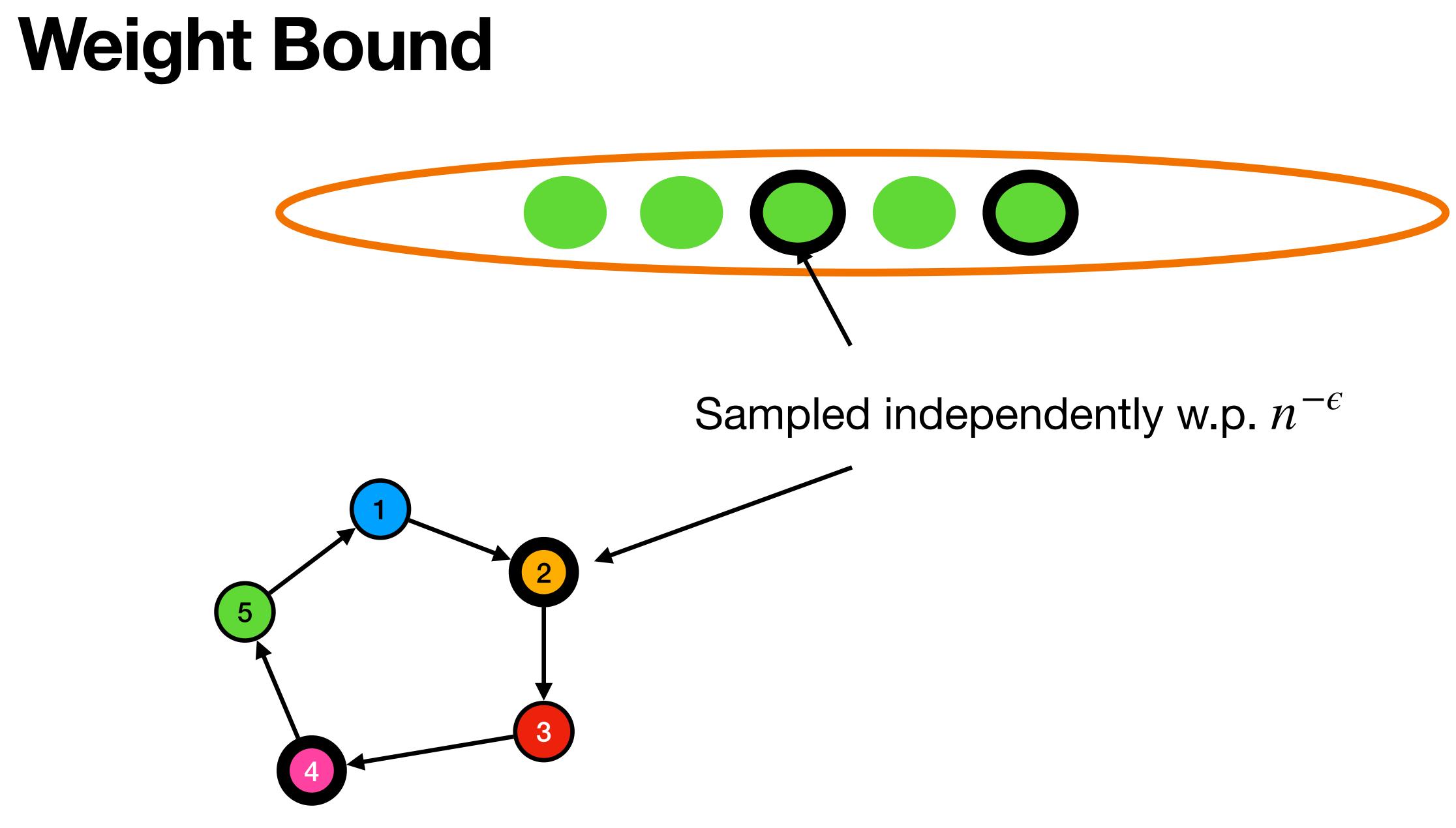


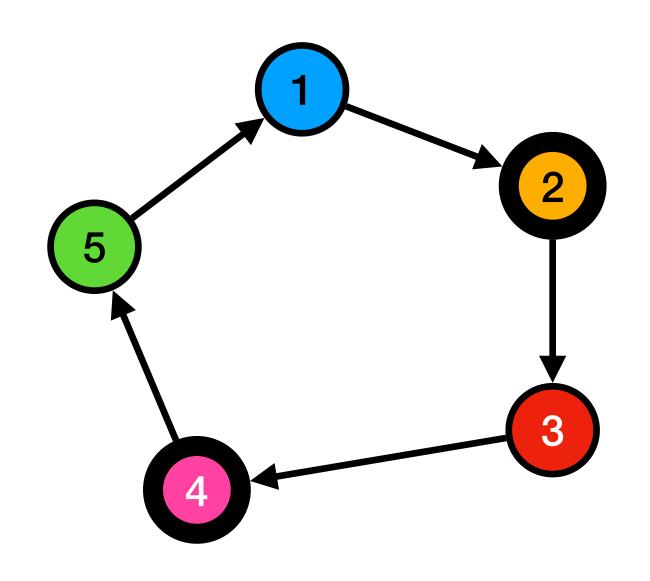
Sampled independently w.p. $n^{-\epsilon}$

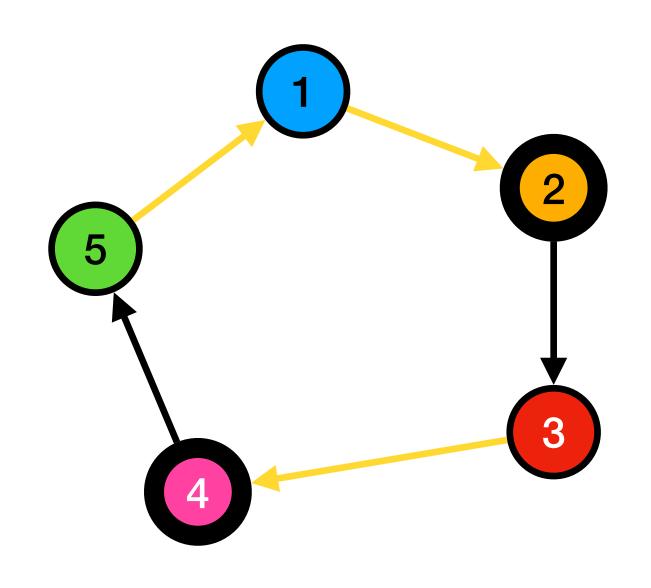


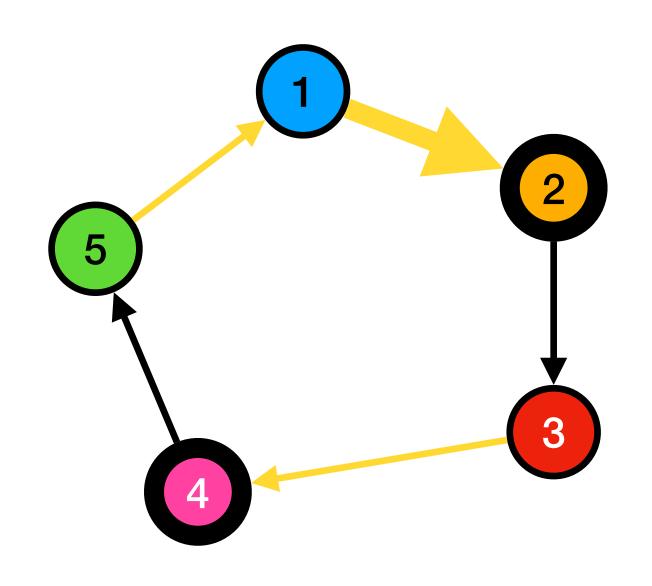
Sampled independently w.p. $n^{-\epsilon}$

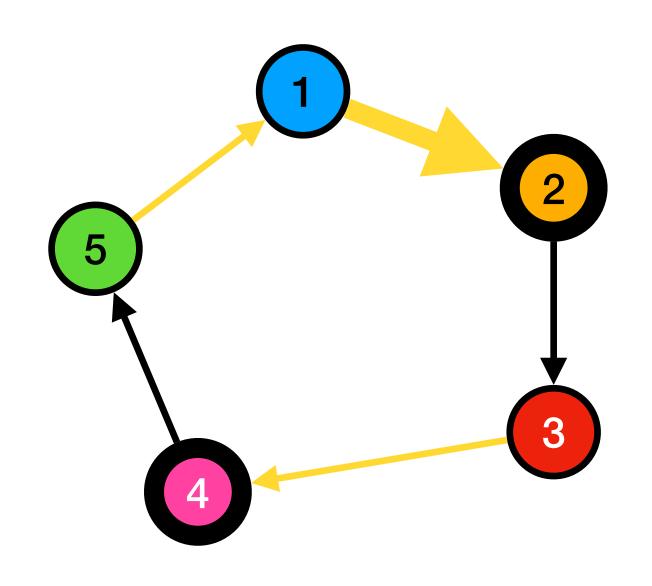


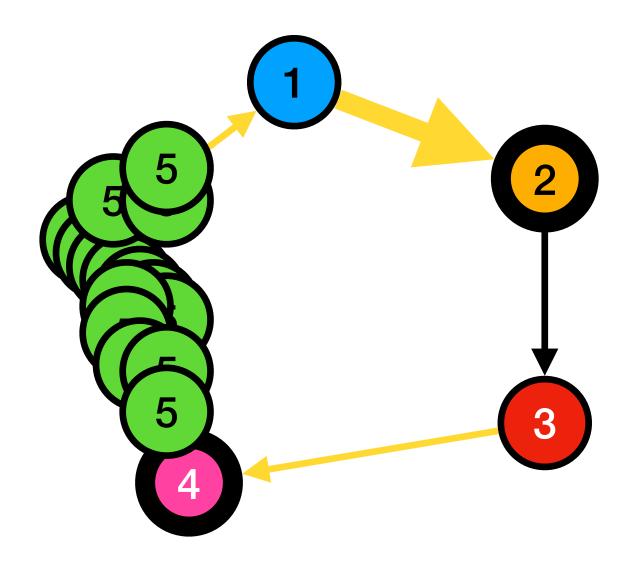


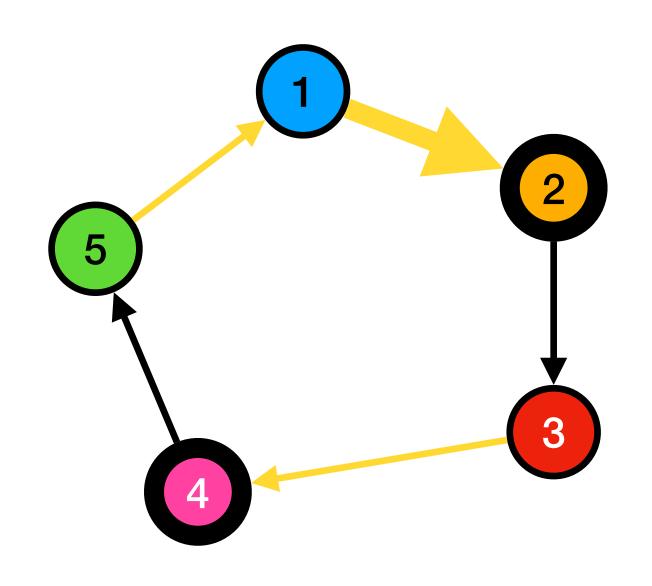


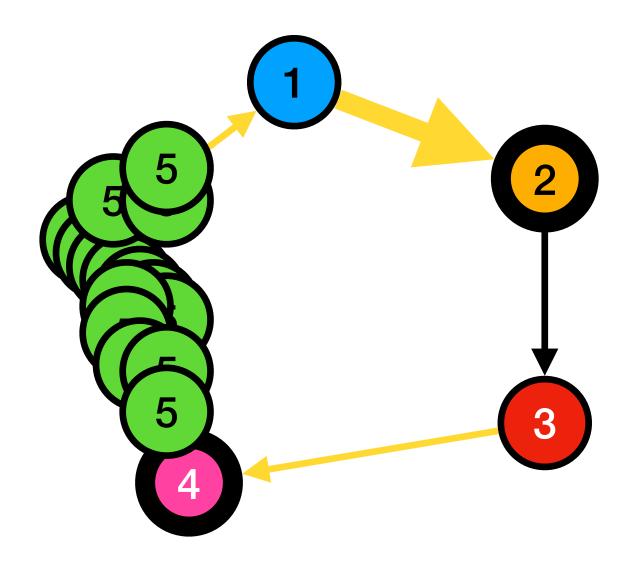


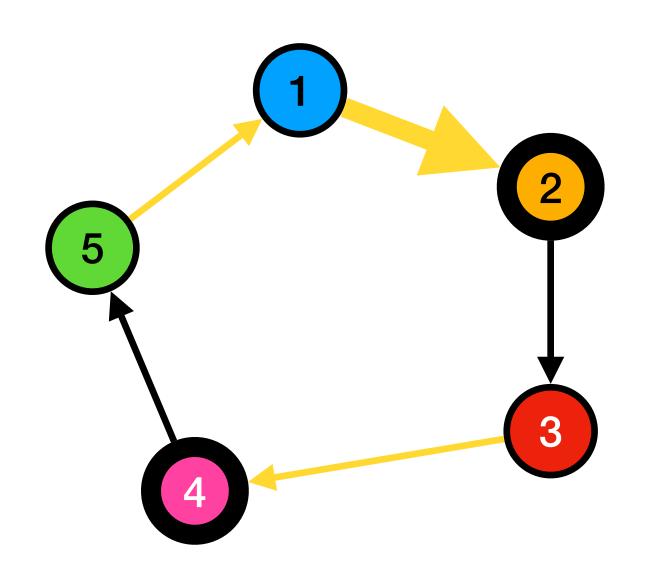




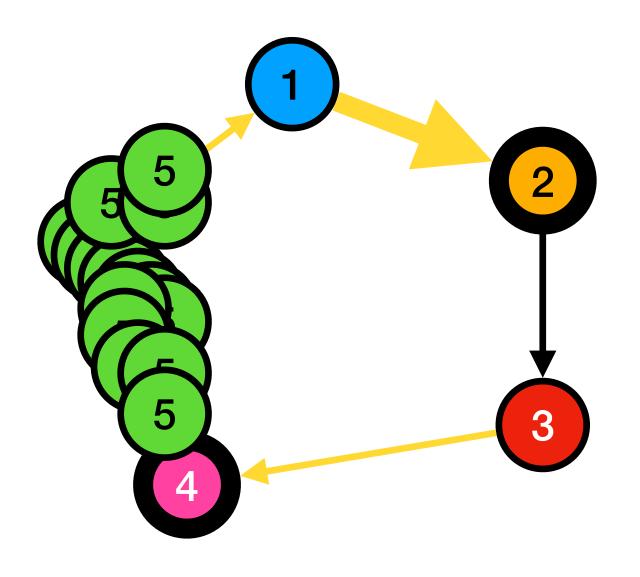


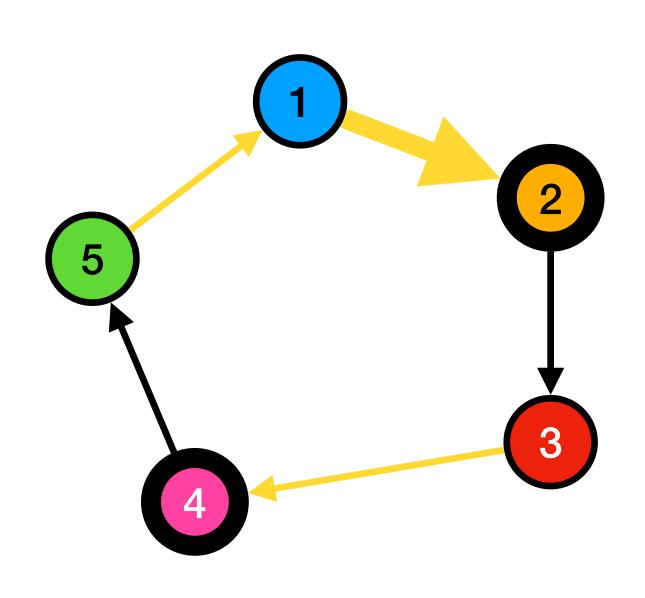


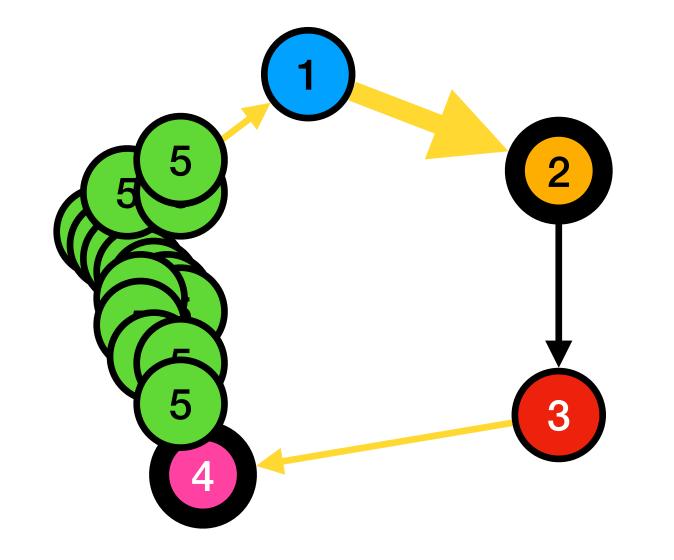




In the tour, an edge is charged $O(n^{\epsilon})$ times (in expectation) + $O(1/\epsilon)$ rounds + tour is over an optimal tree







$\implies O(n^{\epsilon}/\epsilon)$ weight approximation

- + $O(1/\epsilon)$ rounds + tour is over an optimal tree
- In the tour, an edge is charged $O(n^{\epsilon})$ times (in expectation)

algorithm gets a spanning tree of

- algorithm gets a spanning tree of
 - length: $O(1/\epsilon) \cdot L$

- algorithm gets a spanning tree of
 - length: $O(1/\epsilon) \cdot L$
 - weight: $O(n^{\epsilon}/\epsilon) \cdot OPT_L$

- algorithm gets a spanning tree of
 - length: $O(1/\epsilon) \cdot L$
 - weight: $O(n^{\epsilon}/\epsilon) \cdot OPT_L$
- Can further tradeoff between length and weight using $\epsilon!$

A simple random sampling + greedily adding cheapest L-bounded paths

- algorithm gets a spanning tree of
 - length: $O(1/\epsilon) \cdot L$
 - weight: $O(n^{\epsilon}/\epsilon) \cdot OPT_L$

Can further tradeoff between length and weight using $\epsilon!$

Thank you

