
Simple  
Length-Constrained 

Minimum Spanning Trees

Ellis Hershkowitz & Richard Huang
Brown University



Minimum Spanning Tree (MST)



Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that 
minimizes the sum of edge weights



Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that 
minimizes the sum of edge weights



Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that 
minimizes the sum of edge weights



Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that 
minimizes the sum of edge weights



Length-Constrained 
Minimum Spanning Tree (MST)



Length-Constrained 
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint



Length-Constrained 
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input  find a spanning tree with diameter at most  that 
minimizes the sum of edge weights

L > 0 L



Length-Constrained 
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input  find a spanning tree with diameter at most  that 
minimizes the sum of edge weights

L > 0 L



Length-Constrained 
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input  find a spanning tree with diameter at most  that 
minimizes the sum of edge weights

L > 0 L



Length-Constrained 
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input  find a spanning tree with diameter at most  that 
minimizes the sum of edge weights

L > 0 L



Length-Constrained 
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input L > 0 find a spanning tree with diameter at most L that
minimizes the sum of edge weights
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• NP-hard; there mainly exist bicriteria approximation algorithms

• Let  be the weight of a min-weight spanning tree with diameter  OPTL L

• Need to approximate  and L OPTL

Length-Constrained 
Minimum Spanning Tree (MST)
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Our Result

There is a (simple) algorithm that given any ,ϵ ≥ 1/poly(n)

outputs a spanning tree with

length: O(1/ϵ) ⋅ L

        weight: O(nϵ/ϵ) ⋅ OPTL

(with high probability)
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Different ’s give different results:ϵ

Length Weightϵ

1/log n O(log n) O(log n)

1/c O(1) O(n1/c)

log log n/log n o(log n) poly(log n)
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Related Work

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

If you want to preserve  exactly,L

then you must pay an  weight approximation.Ω(log n)
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Weight Length Comments Citation

O(log n) O(log n)
Repeatedly computes 

min-weight max 
matchings (complicated)

Marathe/Ravi/Sundaram/
Ravi/Rosenkrantz/Hunt 

III, 1998

O(nϵe1/ϵ) 1 n1/ϵ ⋅ poly(n)
Running time is 
 Kortsarz/Peleg, 1999

O(nϵ/ϵ) O(1/ϵ) Cool Us
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Algorithm

Initially all vertices are active

For  rounds…O(1/ϵ)

1. Sample each active vertex independently with probability n−ϵ

2. For each non-sampled vertex , add the cheapest -bounded path from 
 to a sampled vertex to our subgraph

u L
u

3. Deactivate all non-sampled vertices

Return a shortest-path tree of our subgraph
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Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Designate a root 
to always sample
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Is it feasible = Is it a tree?

All vertices are deactivated after  rounds with high probabilityO(1/ϵ)

Sampled independently w.p. , so 
after enough rounds it will be 

nonsampled + deactivated w.h.p.

n−ϵ
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Length Bound

We add paths of length at most  for  roundsL O(1/ϵ)

 Subgraph has length  ⟹ O(1/ϵ) ⋅ L

🤯
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Idea: compare how a worse algorithm does on a structured graph.

 
 

our alg weight  worse alg weight  ≤ ≤ O(nϵ/ϵ) ⋅ OPTL
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Structured graph: a contracted Euler tour of an optimal solution
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Total sum of edge 
weights in 

contracted Euler 
tour is 

  !!O(OPTL)
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Worse algorithm: charge the weight of the path from each non-sampled 
vertex to its nearest sampled vertex in the contracted Euler tour

Deactivate non-sampled vertices and repeat

1

3
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Weight Bound

So our algorithm’s weight is at most the worse algorithm’s weight 

Now just show that the worse algorithm’s weight is at most 
O(nϵ/ϵ) ⋅ OPTL
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Weight Bound

In the tour, an edge is charged  times (in expectation)O(nϵ)

1
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3
4

5

+  rounds + tour is over an optimal treeO(1/ϵ)

  weight approximation ⟹ O(nϵ/ϵ)
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Conclusion

Thank you

A simple random sampling + greedily adding cheapest -bounded paths L

algorithm gets a spanning tree of 

length:  O(1/ϵ) ⋅ L

weight: O(nϵ/ϵ) ⋅ OPTL

Can further tradeoff between length and weight using !ϵ


