
Simple
Length-Constrained

Minimum Spanning Trees

Ellis Hershkowitz & Richard Huang
Brown University

Minimum Spanning Tree (MST)

Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that
minimizes the sum of edge weights

Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that
minimizes the sum of edge weights

Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that
minimizes the sum of edge weights

Minimum Spanning Tree (MST)

• Given a (connected) edge-weighted graph, find a spanning tree that
minimizes the sum of edge weights

Length-Constrained
Minimum Spanning Tree (MST)

Length-Constrained
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

Length-Constrained
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input find a spanning tree with diameter at most that
minimizes the sum of edge weights

L > 0 L

Length-Constrained
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input find a spanning tree with diameter at most that
minimizes the sum of edge weights

L > 0 L

Length-Constrained
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input find a spanning tree with diameter at most that
minimizes the sum of edge weights

L > 0 L

Length-Constrained
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input find a spanning tree with diameter at most that
minimizes the sum of edge weights

L > 0 L

Length-Constrained
Minimum Spanning Tree (MST)
• Introduce an edge-length function and a length (diameter) constraint

• Given another input L > 0 find a spanning tree with diameter at most L that
minimizes the sum of edge weights

• NP-hard; there mainly exist bicriteria approximation algorithms

Length-Constrained
Minimum Spanning Tree (MST)

• NP-hard; there mainly exist bicriteria approximation algorithms

• Let be the weight of a min-weight spanning tree with diameter OPTL L

Length-Constrained
Minimum Spanning Tree (MST)

• NP-hard; there mainly exist bicriteria approximation algorithms

• Let be the weight of a min-weight spanning tree with diameter OPTL L

• Need to approximate and L OPTL

Length-Constrained
Minimum Spanning Tree (MST)

Our Result

Our Result

Our Result

There is a (simple) algorithm that given any ,ϵ ≥ 1/poly(n)

Our Result

There is a (simple) algorithm that given any ,ϵ ≥ 1/poly(n)

outputs a spanning tree with

Our Result

There is a (simple) algorithm that given any ,ϵ ≥ 1/poly(n)

outputs a spanning tree with

length: O(1/ϵ) ⋅ L

Our Result

There is a (simple) algorithm that given any ,ϵ ≥ 1/poly(n)

outputs a spanning tree with

length: O(1/ϵ) ⋅ L

 weight: O(nϵ/ϵ) ⋅ OPTL

Our Result

There is a (simple) algorithm that given any ,ϵ ≥ 1/poly(n)

outputs a spanning tree with

length: O(1/ϵ) ⋅ L

 weight: O(nϵ/ϵ) ⋅ OPTL

(with high probability)

Different ’s give different results:ϵ

Length Weightϵ

Different ’s give different results:ϵ

Length Weightϵ

1/log n O(log n) O(log n)

Different ’s give different results:ϵ

Length Weightϵ

1/log n O(log n) O(log n)

1/c O(1) O(n1/c)

Different ’s give different results:ϵ

Length Weightϵ

1/log n O(log n) O(log n)

1/c O(1) O(n1/c)

log log n/log n o(log n) poly(log n)

Related Work

Related Work

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

Related Work

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

Related Work

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

If you want to preserve exactly,L

Related Work

Lower bound for length-constrained MST by (Naor/Schieber, 1997):

If you want to preserve exactly,L

then you must pay an weight approximation.Ω(log n)

Related Work

Weight Length Comments Citation

Related Work

Weight Length Comments Citation

O(log n) O(log n)
Repeatedly computes

min-weight max
matchings (complicated)

Marathe/Ravi/Sundaram/
Ravi/Rosenkrantz/Hunt

III, 1998

Related Work

Weight Length Comments Citation

O(log n) O(log n)
Repeatedly computes

min-weight max
matchings (complicated)

Marathe/Ravi/Sundaram/
Ravi/Rosenkrantz/Hunt

III, 1998

O(nϵe1/ϵ) 1 n1/ϵ ⋅ poly(n)
Running time is
 Kortsarz/Peleg, 1999

Related Work

Weight Length Comments Citation

O(log n) O(log n)
Repeatedly computes

min-weight max
matchings (complicated)

Marathe/Ravi/Sundaram/
Ravi/Rosenkrantz/Hunt

III, 1998

O(nϵe1/ϵ) 1 n1/ϵ ⋅ poly(n)
Running time is
 Kortsarz/Peleg, 1999

O(nϵ/ϵ) O(1/ϵ) Cool Us

Algorithm

Algorithm

Initially all vertices are active

Algorithm

Initially all vertices are active

For rounds…O(1/ϵ)

Algorithm

Initially all vertices are active

For rounds…O(1/ϵ)

1. Sample each active vertex independently with probability n−ϵ

Algorithm

Initially all vertices are active

For rounds…O(1/ϵ)

1. Sample each active vertex independently with probability n−ϵ

2. For each non-sampled vertex , add the cheapest -bounded path from
 to a sampled vertex to our subgraph

u L
u

Algorithm

Initially all vertices are active

For rounds…O(1/ϵ)

1. Sample each active vertex independently with probability n−ϵ

2. For each non-sampled vertex , add the cheapest -bounded path from
 to a sampled vertex to our subgraph

u L
u

3. Deactivate all non-sampled vertices

Algorithm

Initially all vertices are active

For rounds…O(1/ϵ)

1. Sample each active vertex independently with probability n−ϵ

2. For each non-sampled vertex , add the cheapest -bounded path from
 to a sampled vertex to our subgraph

u L
u

3. Deactivate all non-sampled vertices

Return a shortest-path tree of our subgraph

Algorithm

Algorithm

Algorithm

Algorithm Red = deactivated

Bolded = sampled

Algorithm Red = deactivated

Bolded = sampled

Algorithm Red = deactivated

Bolded = sampled

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Algorithm Red = deactivated

Bolded = sampled

= cheapest -bounded pathL

Designate a root
to always sample

Is it feasible = Is it a tree?

Is it feasible = Is it a tree?

All vertices are deactivated after rounds with high probabilityO(1/ϵ)

Is it feasible = Is it a tree?

All vertices are deactivated after rounds with high probabilityO(1/ϵ)

Is it feasible = Is it a tree?

All vertices are deactivated after rounds with high probabilityO(1/ϵ)

Is it feasible = Is it a tree?

All vertices are deactivated after rounds with high probabilityO(1/ϵ)

Is it feasible = Is it a tree?

All vertices are deactivated after rounds with high probabilityO(1/ϵ)

Sampled independently w.p. , so
after enough rounds it will be

nonsampled + deactivated w.h.p.

n−ϵ

Is it feasible = Is it a tree?

Then all vertices are connected by some path to the root

Is it feasible = Is it a tree?

Then all vertices are connected by some path to the root

Length Bound

Length Bound

We add paths of length at most for roundsL O(1/ϵ)

Length Bound

We add paths of length at most for roundsL O(1/ϵ)

 Subgraph has length  ⟹ O(1/ϵ) ⋅ L

Length Bound

We add paths of length at most for roundsL O(1/ϵ)

 Subgraph has length  ⟹ O(1/ϵ) ⋅ L

🤯

Weight Bound

Weight Bound

Idea: compare how a worse algorithm does on a structured graph.

Weight Bound

Idea: compare how a worse algorithm does on a structured graph.

 
 

our alg weight worse alg weight ≤ ≤ O(nϵ/ϵ) ⋅ OPTL

Weight Bound

Structured graph: a contracted Euler tour of an optimal solution

Weight Bound

Structured graph: a contracted Euler tour of an optimal solution

1

2

3 4

5

Optimal tree

2 1

5 10

Weight Bound

Structured graph: a contracted Euler tour of an optimal solution

1

2

3 4

5

1

2

3

24

2

1

5

Optimal tree Euler tour

2 1

5 10

1
1 2

2 5

5
10

10

Weight Bound

Structured graph: a contracted Euler tour of an optimal solution

1

2

3 4

5

1

2

3

24

2

1

5 1

2

3
4

5

Optimal tree Euler tour Contracted

2 1

5 10

1
1 2

2 5

5
10

10

2

5

5+10=15

1

10+2+1=13

Weight Bound

Structured graph: a contracted Euler tour of an optimal solution

1

2

3 4

5

1

2

3
4

5

Optimal tree Contracted

2 1

5 10

2

5

5+10=15

1

10+2+1=13

Total sum of edge
weights in

contracted Euler
tour is

 !!O(OPTL)

Weight Bound

Worse algorithm: charge the weight of the path from each non-sampled
vertex to its nearest sampled vertex in the contracted Euler tour

Weight Bound

Worse algorithm: charge the weight of the path from each non-sampled
vertex to its nearest sampled vertex in the contracted Euler tour

1

2

3
4

5

1, 3 are sampled

Weight Bound

Worse algorithm: charge the weight of the path from each non-sampled
vertex to its nearest sampled vertex in the contracted Euler tour

1

2

3
4

5

1, 3 are sampled

Charge the paths:
(2,3)
(4,1)
(5,1)

Weight Bound

Worse algorithm: charge the weight of the path from each non-sampled
vertex to its nearest sampled vertex in the contracted Euler tour

1

2

3
4

5

Deactivate non-sampled vertices and repeat

Weight Bound

Worse algorithm: charge the weight of the path from each non-sampled
vertex to its nearest sampled vertex in the contracted Euler tour

Deactivate non-sampled vertices and repeat

1

3

Weight Bound
Why worse?

Weight Bound
Why worse?

Worse alg charges -bounded paths from
the ET (could be arbitrarily high in weight)

L

Weight Bound
Why worse?

Worse alg charges -bounded paths from
the ET (could be arbitrarily high in weight)

L

1

2

3
4

5

2

5

5+10=15

1

10+2+1=13

Weight Bound
Why worse?

Worse alg charges -bounded paths from
the ET (could be arbitrarily high in weight)

L

1

2

3
4

5

2

5

5+10=15

1

10+2+1=13

Weight Bound
Why worse?

Worse alg charges -bounded paths from
the ET (could be arbitrarily high in weight)

L

1

2

3
4

5

2

5

5+10=15

1

10+2+1=13

But our alg chooses the min-
weight -bounded pathsL

Weight Bound
Why worse?

Worse alg charges -bounded paths from
the ET (could be arbitrarily high in weight)

L

1

2

3
4

5

2

5

5+10=15

1

10+2+1=13

But our alg chooses the min-
weight -bounded pathsL

Weight Bound
Why worse?

Worse alg charges -bounded paths from
the ET (could be arbitrarily high in weight)

L

1

2

3
4

5

2

5

5+10=15

1

10+2+1=13

1

5

1

But our alg chooses the min-
weight -bounded pathsL

Weight Bound

So our algorithm’s weight is at most the worse algorithm’s weight

Weight Bound

So our algorithm’s weight is at most the worse algorithm’s weight

Now just show that the worse algorithm’s weight is at most
O(nϵ/ϵ) ⋅ OPTL

Weight Bound

Sampled independently w.p. n−ϵ

Weight Bound

Sampled independently w.p. n−ϵ

Weight Bound

Sampled independently w.p. n−ϵ

1

2

3
4

5

Weight Bound

Sampled independently w.p. n−ϵ

1

2

3
4

5

Weight Bound

In the tour, an edge is charged times (in expectation)
O(nϵ)

Weight Bound

In the tour, an edge is charged times (in expectation)
O(nϵ)

1

2

3
4

5

Weight Bound

In the tour, an edge is charged times (in expectation)
O(nϵ)

1

2

3
4

5

Weight Bound

In the tour, an edge is charged times (in expectation)O(nϵ)

1

2

3
4

5

Weight Bound

In the tour, an edge is charged times (in expectation)O(nϵ)

1

2

3
4

5

1

2

3
4

555555555
55
5

5 5
5

Weight Bound

In the tour, an edge is charged times (in expectation)O(nϵ)

1

2

3
4

5

1

2

3
4

555555555
55
5

5 5
5

Weight Bound

In the tour, an edge is charged times (in expectation)O(nϵ)

1

2

3
4

5

+ rounds + tour is over an optimal treeO(1/ϵ)

1

2

3
4

555555555
55
5

5 5
5

Weight Bound

In the tour, an edge is charged times (in expectation)O(nϵ)

1

2

3
4

5

+ rounds + tour is over an optimal treeO(1/ϵ)

 weight approximation ⟹ O(nϵ/ϵ)

1

2

3
4

555555555
55
5

5 5
5

Conclusion

Conclusion

A simple random sampling + greedily adding cheapest -bounded paths L

Conclusion

A simple random sampling + greedily adding cheapest -bounded paths L

algorithm gets a spanning tree of

Conclusion

A simple random sampling + greedily adding cheapest -bounded paths L

algorithm gets a spanning tree of

length: O(1/ϵ) ⋅ L

Conclusion

A simple random sampling + greedily adding cheapest -bounded paths L

algorithm gets a spanning tree of

length: O(1/ϵ) ⋅ L

weight: O(nϵ/ϵ) ⋅ OPTL

Conclusion

A simple random sampling + greedily adding cheapest -bounded paths L

algorithm gets a spanning tree of

length: O(1/ϵ) ⋅ L

weight: O(nϵ/ϵ) ⋅ OPTL

Can further tradeoff between length and weight using !ϵ

Conclusion

Thank you

A simple random sampling + greedily adding cheapest -bounded paths L

algorithm gets a spanning tree of

length: O(1/ϵ) ⋅ L

weight: O(nϵ/ϵ) ⋅ OPTL

Can further tradeoff between length and weight using !ϵ

